ELEG5481 Signal Processing Optimization Techniques Midterm solution

Mar. 20, 2013

Q1. (a) The set C is the convex hull of $\left\{x_{i}\right\}_{i=1}^{k}$, and thus is convex.
(b) Any function $g(x)=f(x)-\left(a^{T} x+b\right)$ is convex if $f(x)$ is convex. A sublevel set of a convex function is convex.
(c) $\|x\|_{q}$ is concave on \mathbf{R}_{+}^{n} when $0<q<1$. Hence C is convex.
(d) For a given w, the set $\left\{x\left|\left|\sum_{i=1}^{n} x_{i} \exp (\boldsymbol{j} \omega i)\right|^{2} \leq 0.1\right\}\right.$ is the intersection of two half spaces. Hence C is convex.
(e) Use Schur's complement. C can be written as

$$
C=\left\{(X, y) \in \mathbf{S}^{n} \times \mathbf{R}^{n} \left\lvert\,\left[\begin{array}{cc}
1 & y^{T} \\
y & X
\end{array}\right] \succeq 0\right.\right\}
$$

Note that (X, y) is an affine function of $\left[\begin{array}{ll}1 & y^{T} \\ y & X\end{array}\right]$. Hence C is convex.

Q2. (a) $\|x\|_{1}$ is convex and y^{3} is convex and nondecreasing in \mathbf{R}_{+}. Hence $\|x\|_{1}^{3}$ is convex. Therefore $f(x)$ is convex.
(b) $1 / x_{i}$ is concave on $x_{i}<0$ for all i. Hence $f(x)$ is concave.
(c) $f(x)$ can be written as $f(x)=-2 b^{T} A x+b^{T} b$. Hence $f(x)$ is convex and concave.
(d) $\lambda_{\max }(X)$ is convex, and thus $\lambda_{\max }(-X)$ is convex. $f(X)=-\lambda_{\min }(X)=\lambda_{\max }(-X)$ is convex.
(e) $-\log \operatorname{det}(X)$ is convex in $\mathbf{S}_{++}^{n} \cdot A_{0}+A_{1} x_{1}+\ldots+A_{n} x_{n}$ is linear in x. So $f(x)$ is convex.

Q3. (a) Let t be a slack variable, then the problem can be reformulated as

$$
\begin{array}{ll}
\min _{x, t} & t \\
\text { s.t. } & a_{1}^{T} x+b_{1}+\|C x-d\|_{\infty} \leq t \\
& a_{2}^{T} x+b_{2}+\|C x-d\|_{\infty} \leq t
\end{array}
$$

Let c_{i}^{T} denote the i th row of C, then $a_{1}^{T} x+b_{1}+\|C x-d\|_{\infty} \leq t$ is the same as $a_{1}^{T} x+b_{1}+c_{i}^{T} x-d \leq t$ and $a_{1}^{T} x+b_{1}-c_{i}^{T} x+d \leq t$, for all i. Similarly, $a_{2}^{T} x+b_{2}+\|C x-d\|_{\infty} \leq t$ is the same as $a_{2}^{T} x+b_{2}+c_{i}^{T} x-d \leq t$ and $a_{2}^{T} x+b_{2}-c_{i}^{T} x+d \leq t$, for all i. Therefore, we can rewrite the problem as

$$
\begin{array}{ll}
\min _{x, t} & t \\
\text { s.t. } & a_{1}^{T} x+b_{1}+c_{i}^{T} x-d \leq t \\
& a_{1}^{T} x+b_{1}-c_{i}^{T} x+d \leq t \\
& a_{2}^{T} x+b_{2}+c_{i}^{T} x-d \leq t \\
& a_{2}^{T} x+b_{2}-c_{i}^{T} x+d \leq t \\
& \text { for } i=1, \ldots, m .
\end{array}
$$

(b) Let x_{0} be a local optimal solution which is not globally optimal. This implies that there exists a point $x_{1} \in C$, which is different from x_{0}, such that $f\left(x_{1}\right)<f\left(x_{0}\right)$. Since x_{0} is locally optimal, there exists an $R>0$ such that $f\left(x_{0}\right) \leq f(x)$ for all $x \in C \cap B_{R}\left(x_{0}\right)$, where $B_{R}\left(x_{0}\right)=\left\{x \mid\left\|x-x_{0}\right\|_{2} \leq R\right\}$. Construct $x_{2}=\theta x_{0}+(1-\theta) x_{1}$, where $0<\theta<1$ is a number very closed to one (It suffices to take $\left.\theta \geq 1-R /\left\|x_{0}-x_{1}\right\|_{2}\right)$. Then x_{2} belongs to $C \cap B_{R}\left(x_{0}\right)$. If we have $f\left(x_{2}\right)<f\left(x_{0}\right)$, then we have contradiction and we are done. To show that $f\left(x_{2}\right)<f\left(x_{0}\right)$, by convexity of f, we have $f\left(x_{2}\right)=f\left(\theta x_{0}+(1-\theta) x_{1}\right) \leq \theta f\left(x_{0}\right)+(1-\theta) f\left(x_{1}\right)<f\left(x_{0}\right)$.

We will show that there is at most one optimal solution (It may have no solution at all). Let x_{1} and x_{2} be two different optimal solutions, i.e. $f\left(x_{1}\right)=f\left(x_{2}\right)$. Let θ be an arbitrary point in $(0,1)$, and $x_{3}=\theta x_{1}+(1-\theta) x_{2}$. Then $x_{3} \in C$, and $f\left(x_{3}\right)<\theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)=f\left(x_{1}\right)$ as $f(x)$ is strictly convex. This implies that x_{1} is not optimal, which is a contradiction.

Q4. (a) We show this by induction. For $k=2$, this is obviously true as this is the definition of convex set. Assuming this is true for $k=n$, we need to show that it is true for $k=n+1$. For $k=n+1, y$ can be written as

$$
y=\lambda_{n+1} x_{n+1}+\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) .
$$

If $\lambda_{n+1}=0$, then x is a convex combination of n points, and thus belongs to C. If $\lambda_{n+1}=1$, then $y=x_{k+1}$ belongs to C. If $0<\lambda_{n+1}<1$, we have

$$
y=\lambda_{n+1} x_{n+1}+\left(1-\lambda_{n+1}\right) \tilde{y},
$$

where

$$
\tilde{y}=\sum_{i=1}^{n} \frac{\lambda_{i}}{\left(1-\lambda_{n+1}\right)} x_{i} .
$$

Note that $\sum_{i=1}^{n} \frac{\lambda_{i}}{\left(1-\lambda_{n+1}\right)}=1$, hence \tilde{y} belongs to C. As y is a convex combination of x_{n+1} and \tilde{y}, y belongs to C.
(b) Let us assume that $x_{1}, \ldots, x_{n}>0$. Otherwise, the inequality holds trivially. Consider the function $\log x$ which is convex in \mathbf{R}_{+}. By Jensen's inequality, we have

$$
\log \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1}{n} \sum_{i=1}^{n} \log x_{i}
$$

which implies that

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i} \geq \exp \left(\frac{1}{n} \sum_{i=1}^{n} \log x_{i}\right)=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}
$$

Note that this is the Hadamard's inequality. First assume that all diagonal elements of X are one. Then

$$
\operatorname{det}(X)=\prod_{i=1}^{n} \lambda_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}\right)^{n}=\left(\frac{1}{n} \operatorname{tr} X\right)^{n}=1=\prod_{i=1}^{n} X_{i i} .
$$

Now consider a PSD X that has some zeros on the diagonal, i.e. $X_{i i}=0$ for some i. Then $X_{j, i}=0$ for $j=1, \ldots, n$, which implies $\operatorname{det} X=0$. We also have $\prod_{i=1}^{n} X_{i i}=0$. Hence the Hadamard's inequality is true.
Consider the case that X is PSD and all diagonal elements of X are positive. Construct a diagonal matrix $D^{-\frac{1}{2}}=\mathbf{D i a g}\left(X_{11}^{-\frac{1}{2}}, \ldots, X_{n n}^{-\frac{1}{2}}\right)$. Then $D^{-\frac{1}{2}} X D^{-\frac{1}{2}}$ is PSD and all diagonal elements are one. By the result above, we have

$$
\operatorname{det}\left(D^{-1}\right) \times \operatorname{det}(X)=\operatorname{det}\left(D^{-\frac{1}{2}} X D^{-\frac{1}{2}}\right) \leq 1 .
$$

Therefore $\operatorname{det}(X) \leq \operatorname{det}(D)=\prod_{i=1}^{n} X_{i i}$.

