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Q1. (a) The set C is the convex hull of {z;}¥_;, and thus is convex.

(b) Any function g(x) = f(x) — (a¥z +b) is convex if f(z) is convex. A sublevel set of a convex function
is convex.

(c) [|z[l4 is concave on R} when 0 < ¢ < 1. Hence C' is convex.

(d) For a given w, the set {z | | Y., z; exp(jwi)|?
C is convex.

< 0.1} is the intersection of two half spaces. Hence
(e) Use Schur’s complement. C' can be written as

C= {(X,y) €S" xR"

yT

Note that (X,y) is an affine function of B X

]. Hence C' is convex.

Q2. (a) ||z||1 is convex and y3 is convex and nondecreasing in Ry. Hence ||z||3 is convex. Therefore
f(z) is convex.

(b) 1/z; is concave on x; < 0 for all i. Hence f(z) is concave.

(c) f(z) can be written as f(z) = —2bT Az + bTb. Hence f(x) is convex and concave.

(d) Amax(X) is convex, and thus Apax(—X) is convex. f(X) = —Anin(X) = Amax(—X) is convex.

()

e) —logdet(X) is convex in S . Ag+ A1z + ...+ Apxy, is linear in z. So f(x) is convex.

Q3. (a) Let t be a slack variable, then the problem can be reformulated as
min ¢
x,t
st. alzx+b +[|Cr—dle <t
asr+by+||Co —dl|e <t

Let ¢! denote the ith row of C, then alz +b; + ||Cx —d||» < tisthesame asalz+b +clo—d <t
and afz + b — cf'z +d < t, for all i. Similarly, alz + by + [|[Cz — d||oo < t is the same as
agm + by + ciTx —d <tand agm + by — clTx +d < t, for all i. Therefore, we can rewrite the problem
as
min ¢
x,t
st. alz+b+cla—d<t
alez4+b—cle+d<t
a4+ b+ cfez—d<t
agx—&—bQ—cZTx—i—dgt

fori=1,...,m.

(b) Let xo be a local optimal solution which is not globally optimal. This implies that there exists a
point z7 € C, which is different from z¢, such that f(z1) < f(zo). Since z¢ is locally optimal, there
exists an R > 0 such that f(xg) < f(x) for all z € CN Br(xg), where Br(xg) = {z | ||z —zoll2 < R}.
Construct xo = 0z + (1 — §)z1, where 0 < 6 < 1 is a number very closed to one ( It suffices to
take @ > 1 — R/||xg — x1]|2). Then x2 belongs to C N Bgr(zo). If we have f(z2) < f(xo), then
we have contradiction and we are done. To show that f(xz2) < f(xg), by convexity of f, we have

f(x2) = f(Ozo+ (1 —0)x1) < Of(x0) + (1 —0)f(z1) < f(z0).



We will show that there is at most one optimal solution ( It may have no solution at all). Let 27 and
x2 be two different optimal solutions, i.e. f(z1) = f(z2). Let 6 be an arbitrary point in (0, 1), and
x3 = 0x1 + (1 — 0)xa. Then 23 € C, and f(z3) < 0f(x1) + (1 — 0)f(x2) = f(z1) as f(z) is strictly
convex. This implies that x; is not optimal, which is a contradiction.

Q4. (a) We show this by induction. For k& = 2, this is obviously true as this is the definition of convex

set. Assuming this is true for kK = n, we need to show that it is true for k =n+1. For k=n+1,y

can be written as
n
Yy = )\n+1xn+1 —|— (Z )\Z.’L'Z> .

i=1
If A\41 =0, then « is a convex combination of n points, and thus belongs to C'. If A\,1; = 1, then
Yy = xg41 belongs to C. If 0 < A\,41 < 1, we have

Yy = >\n+1xn+1 + (]- - )\n+1)ﬂ,

where
~ X3
g = — .
; (1 - >‘n+1) ‘
Note that > 1, a—iﬁ =1, hence § belongs to C. As y is a convex combination of x,,1 and ¢, y
belongs to C.
Let us assume that x1,...,2, > 0. Otherwise, the inequality holds trivially. Consider the function

log z which is convex in R. By Jensen’s inequality, we have

1 & 1<
log (n le'L) = 21023%,
= i=

which implies that

1 n 1 n n n
-~ ;azz > exp (n glogxl) = (}:[1@)

Note that this is the Hadamard’s inequality. First assume that all diagonal elements of X are one.

Then N
n 1 n 1 n n
i=1 i=1 i=1

Now consider a PSD X that has some zeros on the diagonal, i.e. X;; = 0 for some ¢. Then X;; =0
for 5 = 1,...,n, which implies detX = 0. We also have H?zl X;i = 0. Hence the Hadamard’s
inequality is true.

Consider the case that X is PSD and all diagonal elements of X are positive. Construct a diagonal
matrix D% = Diag(Xy;?, ..., Xm?). Then D~3X D% is PSD and all diagonal elements are one.
By the result above, we have

det(D™) x det(X) = det(D"2 XD~ %) < 1.

Therefore det(X) < det(D) =[]\, Xy;.



