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Q1. (a) The set C is the convex hull of {xi}ki=1, and thus is convex.

(b) Any function g(x) = f(x)− (aTx+ b) is convex if f(x) is convex. A sublevel set of a convex function

is convex.

(c) ∥x∥q is concave on Rn
+ when 0 < q < 1. Hence C is convex.

(d) For a given w, the set {x | |
∑n

i=1 xi exp(jωi)|2 ≤ 0.1} is the intersection of two half spaces. Hence

C is convex.

(e) Use Schur’s complement. C can be written as

C =

{
(X, y) ∈ Sn ×Rn

∣∣∣∣ [ 1 yT

y X

]
≽ 0

}
.

Note that (X, y) is an affine function of

[
1 yT

y X

]
. Hence C is convex.

Q2. (a) ∥x∥1 is convex and y3 is convex and nondecreasing in R+. Hence ∥x∥31 is convex. Therefore

f(x) is convex.

(b) 1/xi is concave on xi < 0 for all i. Hence f(x) is concave.

(c) f(x) can be written as f(x) = −2bTAx+ bT b. Hence f(x) is convex and concave.

(d) λmax(X) is convex, and thus λmax(−X) is convex. f(X) = −λmin(X) = λmax(−X) is convex.

(e) − log det(X) is convex in Sn
++. A0 +A1x1 + . . .+Anxn is linear in x. So f(x) is convex.

Q3. (a) Let t be a slack variable, then the problem can be reformulated as

min
x,t

t

s.t. aT1 x+ b1 + ∥Cx− d∥∞ ≤ t

aT2 x+ b2 + ∥Cx− d∥∞ ≤ t

Let cTi denote the ith row of C, then aT1 x+ b1+∥Cx−d∥∞ ≤ t is the same as aT1 x+ b1+ cTi x−d ≤ t

and aT1 x + b1 − cTi x + d ≤ t, for all i. Similarly, aT2 x + b2 + ∥Cx − d∥∞ ≤ t is the same as

aT2 x+ b2 + cTi x− d ≤ t and aT2 x+ b2 − cTi x+ d ≤ t, for all i. Therefore, we can rewrite the problem

as

min
x,t

t

s.t. aT1 x+ b1 + cTi x− d ≤ t

aT1 x+ b1 − cTi x+ d ≤ t

aT2 x+ b2 + cTi x− d ≤ t

aT2 x+ b2 − cTi x+ d ≤ t

for i = 1, . . . ,m.

(b) Let x0 be a local optimal solution which is not globally optimal. This implies that there exists a

point x1 ∈ C, which is different from x0, such that f(x1) < f(x0). Since x0 is locally optimal, there

exists an R > 0 such that f(x0) ≤ f(x) for all x ∈ C∩BR(x0), where BR(x0) = {x | ∥x−x0∥2 ≤ R}.
Construct x2 = θx0 + (1 − θ)x1, where 0 < θ < 1 is a number very closed to one ( It suffices to

take θ ≥ 1 − R/∥x0 − x1∥2). Then x2 belongs to C ∩ BR(x0). If we have f(x2) < f(x0), then

we have contradiction and we are done. To show that f(x2) < f(x0), by convexity of f , we have

f(x2) = f(θx0 + (1− θ)x1) ≤ θf(x0) + (1− θ)f(x1) < f(x0).
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We will show that there is at most one optimal solution ( It may have no solution at all). Let x1 and

x2 be two different optimal solutions, i.e. f(x1) = f(x2). Let θ be an arbitrary point in (0, 1), and

x3 = θx1 + (1 − θ)x2. Then x3 ∈ C, and f(x3) < θf(x1) + (1 − θ)f(x2) = f(x1) as f(x) is strictly

convex. This implies that x1 is not optimal, which is a contradiction.

Q4. (a) We show this by induction. For k = 2, this is obviously true as this is the definition of convex

set. Assuming this is true for k = n, we need to show that it is true for k = n+ 1. For k = n+ 1, y

can be written as

y = λn+1xn+1 +

(
n∑

i=1

λixi

)
.

If λn+1 = 0, then x is a convex combination of n points, and thus belongs to C. If λn+1 = 1, then

y = xk+1 belongs to C. If 0 < λn+1 < 1, we have

y = λn+1xn+1 + (1− λn+1)ỹ,

where

ỹ =

n∑
i=1

λi

(1− λn+1)
xi.

Note that
∑n

i=1
λi

(1−λn+1)
= 1, hence ỹ belongs to C. As y is a convex combination of xn+1 and ỹ, y

belongs to C.

(b) Let us assume that x1, . . . , xn > 0. Otherwise, the inequality holds trivially. Consider the function

log x which is convex in R+. By Jensen’s inequality, we have

log

(
1

n

n∑
i=1

xi

)
≥ 1

n

n∑
i=1

log xi,

which implies that

1

n

n∑
i=1

xi ≥ exp

(
1

n

n∑
i=1

log xi

)
=

(
n∏

i=1

xi

) 1
n

.

Note that this is the Hadamard’s inequality. First assume that all diagonal elements of X are one.

Then

det(X) =

n∏
i=1

λi ≤

(
1

n

n∑
i=1

λi

)n

=

(
1

n
trX

)n

= 1 =

n∏
i=1

Xii.

Now consider a PSD X that has some zeros on the diagonal, i.e. Xii = 0 for some i. Then Xj,i = 0

for j = 1, . . . , n, which implies detX = 0. We also have
∏n

i=1 Xii = 0. Hence the Hadamard’s

inequality is true.

Consider the case that X is PSD and all diagonal elements of X are positive. Construct a diagonal

matrix D− 1
2 = Diag(X

− 1
2

11 , . . . , X
− 1

2
nn ). Then D− 1

2XD− 1
2 is PSD and all diagonal elements are one.

By the result above, we have

det(D−1)× det(X) = det(D− 1
2XD− 1

2 ) ≤ 1.

Therefore det(X) ≤ det(D) =
∏n

i=1 Xii.
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