ELEG5481 Signal Processing Optimization Techniques
Assignment Solution4

Q1. (25%) Formulate the £4-norm approximation problem

min ||Az — bl|4
zeR™

as a convex QCQP. The matrix A € R"™*™ and the vector b € R™ are given.

Solution: Adding slack variables t; for ¢ = 1,...,m, the problem can be converted to
m
. 2
wip D¢
i=1
st. (afz—0)><t;, i=1,...,m

which is a convex QCQP.

Q2. (25%) Formulate the following optimization problem as a semidefinte programe.

min  sup ¢! F(z) ¢
T ezt

st. F(z) >0,

where

with each F; € S™.

Solution: For a given z, sup.,<1 ¢’ F ()" cis the Apax(F(z) ™), which is the same as 1/ Amin (F()).
To minimize 1/Amin(F(z)), is the same as maximizing Amin (F(x)). Therefore, the problem is written
as
max Amin(F(x))
st. F(x) >0,

which can be again rewritten as
max A

z)

st. F(x) — A =0,
F(z) > 0.
We can relax this problem a little by allowing F'(x) > 0.

max A

1:5

st. F(x) — A =0,

When the optimal solution A* < 0, we know that the original problem is infeasible. And when
A* > 0, an optimal solution z* is an optimal solution of the original problem.




Q3. (25%) Consider the following problem

atz+b

cTr+d

st. x>0, 271 <1,

min
zeR"?

where ¢ € R}, and d > 0. Show that this problem is equivalent to the following problem

min aly + bt
yeR" teR

st. Ty4dt=1,
y=0, y'1<t,
t>0.

Solution: Given a z which is feasible in the first problem, it can be easily seen that (y,t) =
(v/(cTx + d),1/(cTx + d)) is an feasible solution of the second problem, and it shares the same
objective value of x. This show that the optimal objective value of the first problem is no greater
than that of the second problem.

Conversely, given a feasible solution (y,t) of the second problem, we claim that ¢ > 0. For
otherwise, ¢t = 0 and y = 0 which violate ¢y +dt = 1. It can be easily seen that = = y/t is a feasible
solution of the first problem, and shares the same objective value of the second problem. This show
that the optimal objective value of the second problem is no greater than that of the first problem.

To conclude, these two problems share the same optimal objective value.

Q4. (a) (7%) For u € R, the arithmetic mean H; (u), geometric mean Ha(u), harmonic mean Hs(u),
and the minimum value Hy(u) are defined as

1 K K 1/K
Hy(u) = 7 Zuk, Hy(u) = <H uk> ,
k=1 k=1

K -1
Hs(u) =K <Zukl> , Hy(u) = min  ug.
k=1

k=1,...K

Show that Hy(u) > Ha(u) > Hs(u) > Hy(u). Hint: You don’t need to show Hj(u) > Hs(u) which
you have seen in the midterm exam. For Hy(u) > Hs(u), try using Hy(u) > Hao(u).
(b) (9%) Convert the following optimization problem to a quasi-convex problem.

max  Hy(u
s,ueRK 4( )

s.t. uk:1n<1—|— 5k ), k=1,....K,

Ok + D jo Oh.jS;
OSSkSPk, k:].,...,K,

where all o, ; and Pj are given positive numbers. Hint: consider generalized linear-fractional
programiming.
(¢) (9%) Convert the following optimization problem to a convex problem.

ma. Hso(u
s,uEP}{(K 2( )

Sk
st. up=In|1+ , k=1,...,K,
( Ok + D ik aku‘«%‘)

OSSkSPk, k:].,...,K,




where all oy, ay,; and Py are given positive numbers. Hint: The following functions are convex:
K
f(z) = lnz:a;@e”"’“7 dom f = Rf+, when ap, >0fork=1,..., K,
k=1

g(t) = ln(el/t — 1), dom g = R++.

Solution:
(a) By Hi(u) > Hy(u), we have

K /K , g K Hlil u; /K Ko,
Hy(u)/H3z(u) = % (H uk> (Z“kl> — %Z ( J—U ) > Hi(zl i_q
k=1 k=1 k Hk:l Uy,

k=1

It is easy to show Hs(u) > Hy(u). Indeed, we have
HS(U) > K (Kur:liln)il = Umin = H4(u)7

where wmin = ming—1, . x ug.
(b) Tt is equivalent to maximize the minimum wug. Therefore we can recast the problem as

. Sk
max min
seRK  k=1,...K o + Zj#k Qg jSj
s.t. 0 < s < Py, k=1,....K.

The constraints are convex obviously. We will show that the objective function is quasiconcave.
The superlevel set is

So={s |

Sk
O+ D2k Ok 3 S;

>a, k=1,...,K.}

s | sp—a ak—i-Zak,jsj >0, k=1,...,K.
i#k
This is the intersection of half spaces, which is convex.
(¢) There are some typos in the hint. There is no mark reduction for this reason. The correct hint
is

K
f(x):lnzakemk’ dom f=RX, whena,>0fork=1,... K,
k=1
g(t):hl(eet—l)7 dom g = R.

Taking log of the objective function, discarding the constant 1/K, and changing the equality
constraint to inequality constraint (why we can do it?), the problem can be rewritten as

K
max E In ug
RK
s,uc =1

st. up<In|1+ %k , k=1,....K,
Ok + D j Oh.jS;

0< s < P, k=1,...,K,

Using variable transformation uy = exp tx, the problem is rewritten as

K
max E In et*
teRK
8,1€ k=1

st. et <ln|1+ 5k
Ok + D jok Oh,jS;

0<8k<Pk k:].,K




The first constraint is the same as

Ok + D sk OkjS; - 1
Sk ~ exp(exp(ty)) — 1

Using the variable transformation s; = exp(y;) and taking log, the first constraint can be rewrite
as

In | ok exp(—yr) + Y an;exply; — yi) | + In(exp(exp(ty)) — 1) < 0.
J#k
which is convex.
Therefore, we can write the problem as

K
max E tr
tERK

yite k=1

st. In | opexp(—yk) + Zakj exp(y; — yx) | + In(exp(exp(tx)) — 1) < 0.
7k
Yk < In Py,
k=1,...,K.

It can be check that In(exp(exp(t)) — 1) is convex. Therefore, this is a convex problem.




