
ELEG5481 Signal Processing Optimization Techniques

Assignment Solution4

Q1. (25%) Formulate the ℓ4-norm approximation problem

min
x∈Rn

‖Ax− b‖4

as a convex QCQP. The matrix A ∈ Rm×n and the vector b ∈ Rm are given.

Solution: Adding slack variables ti for i = 1, . . . ,m, the problem can be converted to

min
x,t

m
∑

i=1

t2i

s.t. (aTi x− bi)
2 ≤ ti, i = 1, . . . ,m.

which is a convex QCQP.

Q2. (25%) Formulate the following optimization problem as a semidefinte programe.

min
x

sup
‖c‖2≤1

cTF (x)−1c

s.t. F (x) ≻ 0,

where

F (x) = F0 + x1F1 + . . .+ xnFn

with each Fi ∈ Sm.

Solution: For a given x, sup‖c‖2≤1 c
TF (x)−1c is the λmax(F (x)−1), which is the same as 1/λmin(F (x)).

To minimize 1/λmin(F (x)), is the same as maximizing λmin(F (x)). Therefore, the problem is written

as
max

x
λmin(F (x))

s.t. F (x) ≻ 0,

which can be again rewritten as
max
x,λ

λ

s.t. F (x)− λI � 0,

F (x) ≻ 0.

We can relax this problem a little by allowing F (x) � 0.

max
x,λ

λ

s.t. F (x)− λI � 0,

F (x) � 0.

When the optimal solution λ⋆ ≤ 0, we know that the original problem is infeasible. And when

λ⋆ > 0, an optimal solution x⋆ is an optimal solution of the original problem.
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Q3. (25%) Consider the following problem

min
x∈Rn

aTx+ b

cTx+ d

s.t. x � 0, xT 1 ≤ 1,

where c ∈ Rn
+, and d > 0. Show that this problem is equivalent to the following problem

min
y∈Rn,t∈R

aT y + bt

s.t. cT y + dt = 1,

y � 0, yT 1 ≤ t,

t ≥ 0.

Solution: Given a x which is feasible in the first problem, it can be easily seen that (y, t) =

(x/(cTx + d), 1/(cTx + d)) is an feasible solution of the second problem, and it shares the same

objective value of x. This show that the optimal objective value of the first problem is no greater

than that of the second problem.

Conversely, given a feasible solution (y, t) of the second problem, we claim that t > 0. For

otherwise, t = 0 and y = 0 which violate cT y+dt = 1. It can be easily seen that x = y/t is a feasible

solution of the first problem, and shares the same objective value of the second problem. This show

that the optimal objective value of the second problem is no greater than that of the first problem.

To conclude, these two problems share the same optimal objective value.

Q4. (a) (7%) For u ∈ RK
++, the arithmetic mean H1(u), geometric mean H2(u), harmonic mean H3(u),

and the minimum value H4(u) are defined as

H1(u) =
1

K

K
∑

k=1

uk, H2(u) =

(

K
∏

k=1

uk

)1/K

,

H3(u) = K

(

K
∑

k=1

u−1

k

)−1

, H4(u) = min
k=1,...,K

uk.

Show that H1(u) ≥ H2(u) ≥ H3(u) ≥ H4(u). Hint: You don’t need to show H1(u) ≥ H2(u) which

you have seen in the midterm exam. For H2(u) ≥ H3(u), try using H1(u) ≥ H2(u).

(b) (9%) Convert the following optimization problem to a quasi-convex problem.

max
s,u∈RK

H4(u)

s.t. uk = ln

(

1 +
sk

σk +
∑

j 6=k αk,jsj

)

, k = 1, . . . ,K,

0 ≤ sk ≤ Pk, k = 1, . . . ,K,

where all σk, αk,j and Pk are given positive numbers. Hint: consider generalized linear-fractional

programming.

(c) (9%) Convert the following optimization problem to a convex problem.

max
s,u∈RK

H2(u)

s.t. uk = ln

(

1 +
sk

σk +
∑

j 6=k αk,jsj

)

, k = 1, . . . ,K,

0 ≤ sk ≤ Pk, k = 1, . . . ,K,
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where all σk, αk,j and Pk are given positive numbers. Hint: The following functions are convex:

f(x) = ln
K
∑

k=1

ake
xk , dom f = RK

++, when ak ≥ 0 for k = 1, . . . ,K,

g(t) = ln(e1/t − 1), dom g = R++.

Solution:

(a) By H1(u) ≥ H2(u), we have

H2(u)/H3(u) =
1

K

(

K
∏

k=1

uk

)1/K ( K
∑

k=1

u−1

k

)

=
1

K

K
∑

k=1

(

∏K
j=1

uj

)1/K

uk
≥

∏K
j=1

uj
∏K

k=1
uk

= 1.

It is easy to show H3(u) ≥ H4(u). Indeed, we have

H3(u) ≥ K
(

Ku−1

min

)−1
= umin = H4(u),

where umin = mink=1,...,K uk.

(b) It is equivalent to maximize the minimum uk. Therefore we can recast the problem as

max
s∈RK

min
k=1,...,K

sk
σk +

∑

j 6=k αk,jsj

s.t. 0 ≤ sk ≤ Pk, k = 1, . . . ,K.

The constraints are convex obviously. We will show that the objective function is quasiconcave.

The superlevel set is

Sα = {s |
sk

σk +
∑

j 6=k αk,jsj
≥ α, k = 1, . . . ,K.}

=







s | sk − α



σk +
∑

j 6=k

αk,jsj



 ≥ 0, k = 1, . . . ,K.







This is the intersection of half spaces, which is convex.

(c) There are some typos in the hint. There is no mark reduction for this reason. The correct hint

is

f(x) = ln
K
∑

k=1

ake
xk , dom f = RK , when ak ≥ 0 for k = 1, . . . ,K,

g(t) = ln(ee
t

− 1), dom g = R.

Taking log of the objective function, discarding the constant 1/K, and changing the equality

constraint to inequality constraint (why we can do it?), the problem can be rewritten as

max
s,u∈RK

K
∑

k=1

lnuk

s.t. uk ≤ ln

(

1 +
sk

σk +
∑

j 6=k αk,jsj

)

, k = 1, . . . ,K,

0 ≤ sk ≤ Pk, k = 1, . . . ,K,

Using variable transformation uk = exp tk, the problem is rewritten as

max
s,t∈RK

K
∑

k=1

ln etk

s.t. etk ≤ ln

(

1 +
sk

σk +
∑

j 6=k αk,jsj

)

0 ≤ sk ≤ Pk, k = 1, . . . ,K.
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The first constraint is the same as

σk +
∑

j 6=k αkjsj

sk
≤

1

exp(exp(tk))− 1

Using the variable transformation sj = exp(yj) and taking log, the first constraint can be rewrite

as

ln



σk exp(−yk) +
∑

j 6=k

αkj exp(yj − yk)



+ ln(exp(exp(tk))− 1) ≤ 0.

which is convex.

Therefore, we can write the problem as

max
y,t∈RK

K
∑

k=1

tk

s.t. ln



σk exp(−yk) +
∑

j 6=k

αkj exp(yj − yk)



+ ln(exp(exp(tk))− 1) ≤ 0.

yk ≤ lnPk,

k = 1, . . . ,K.

It can be check that ln(exp(exp(t))− 1) is convex. Therefore, this is a convex problem.
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