
ELEG5481 Signal Processing Optimization Techniques

Assignment Solution 3

Feb. 27, 2013

Q1. The following functions are either convex, concave, or neither convex nor concave. Identify their

convexity/concavity, and provide your answer with a proof.

(a)

f(x) = max{∥APx− b∥ | P is a permutation matrix }
with A ∈ Rm×n, b ∈ Rm. Note that a permutation matrix P is a square matrix that has exactly

one entry 1 in each row and column and 0s elsewhere.

(b)

f(x) = ∥Ax− b∥22 − γ∥x∥22
where domf = Rn, A ∈ Rm×n, b ∈ Rm, and γ > 0.

(c)

f(X) = λmin(X) = inf
y∈Rn,y ̸=0

yTXy

yT y
, domf = Sn

(d)

f(x) =

∫ 2π

0

log p(x, ω)dω,

where

p(x, ω) = x1 + x2 cos(ω) + x3 cos(2ω) + . . . xn cos((n− 1)ω),

and domf = {x | p(x, ω) > 0, 0 ≤ ω ≤ 2π}. (Note that log(·) is the natural log function.)

(e) The difference between the maximum and minimum value of a polynomial on a given interval, as a

function of its coefficients:

f(x) = sup
t∈[a,b]

p(t)− inf
t∈[a,b]

p(t),

where p(t) = x1 + x2t+ x3t
2 + . . .+ xnt

n−1, and a and b are real constants with a < b.

(f)

f(x) =
m∑
i=1

e−1/fi(x), domf = {x | fi(x) < 0, i = 1, . . . ,m}.

where the functions fi are convex.

Solution:

(a) For a given P , ∥APx− b∥ is a convex function of x. Therefore

f(x) = max
P :P is a permuation matrx

∥APx− b∥

is convex.

(b)

f(x) = xTATAx− 2xTAT b+ ∥b∥22 − γxTxT

= xT (ATA− γI)x− 2xTAT b+ ∥b∥22

This is a quadratic function and the convexity depends on whether

ATA− γI ≽ 0

can be achieved. Likewise,

f concave ⇐⇒ ATA− γI ≼ 0
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Consider SVD A = UΣV T . Then

ATA = V Σ2V T

This is also symmetric eigendecomposition, with Q = V and Λ = Σ2. Then we have

ATA− γI = V Σ2V T − γI = V (Σ2 − γI)V T

This is actually the eigendecomposition of ATA− γI. Hence

ATA− γI ≽ 0 ⇐⇒ σ2
i − γ ≥ 0, i = 1, . . . , n

ATA− γI ≼ 0 ⇐⇒ σ2
i − γ ≤ 0, i = 1, . . . , n

Concluding, f is convex if γ ≤ σ2
min, f is concave if γ ≥ σ2

max, and f is neither convex nor

concave, otherwise.

(c) Let gy(X) = yTXy
yT y

= tr(XyyT )/yT y. gy(X) is linear in X. Since f(X) = infy∈Rn,y ̸=0 gy(X) is

a point-wise infimum of a concave (linear) function, f is concave.

(d) Let g(x, ω) = log
∑n

i=1 xicos((i − 1)ω). For each ω, g(x, ω) is a concave function (in x with

domain domf). Since f is an integration of all g(x, ω), f is concave.

(e) p(t) is an affine function of x. Therefore supt∈[a,b] p(t) is convex in x. Similarly, inft∈[a,b] p(t) is

concave in x. Therefore f(x) is convex in x.

(f) Consider the function g(t) = e−1/t with domain t < 0. We have g′(t) = 1
t2 e

−1/t and g′′(t) =

(− 2
t3 + 1

t4 )e
−1/t ≥ 0 on t ≥ 0. Therefore g(t) is convex. Let g̃(t) be the extended-value

extension of g(t). Then g̃(t) is nondecreasing. By composition rule g(fi(x)) is convex. Therefore

f(x) =
∑m

i=1 g(fi(x)) is convex.

Q2. Let p(x) and q(x) be functions where p(x) > 0 for x ∈ S, q(x) > 0 for x ∈ S,
∫
S
p(x)dx = 1 and∫

S
q(x)dx = 1. Show that ∫

S

p(x) log q(x)dx ≤
∫
S

p(x) log p(x)dx.

Solution:

We need a little variation of Jensen’s inequality: For a convex f : R → R,

f(
n∑

i=1

θig(xi)) ≤
n∑

i=1

θif(g(xi))

for
∑n

i=1 θi = 1, and for any function g. Likewise,

f(

∫
S

g(x)p(x)dx) ≤
∫
S

p(x)f(g(x))dx

Now, let f(x) = − log x, and g(x) = q(x)/p(x). By the above Jensen’s inequality,

− log
( ∫

S

p(x)
q(x)

p(x)
dx
)
≤ −

∫
S

p(x) log
q(x)

p(x)
dx

⇐⇒ − log 1 ≤
∫
S

p(x) log p(x)dx−
∫
S

p(x) log q(x)dx

⇐⇒
∫
S

p(x) log q(x)dx ≤
∫
S

p(x) log p(x)dx
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Note: It is interesting to see when the inequality can be achieved. This requires∫
S

p(x) log
q(x)

p(x)
dx = 0.

Since p(x) > 0, ∀x ∈ S, the above condition holds iff

log
q(x)

p(x)
= 0, ∀x ∈ S ⇐⇒ p(x) = q(x), ∀x ∈ S

Q3. (15%) Show that the following function is convex.

f(x) = xT (A(x))−1x, domf = {x | A(x) ≻ 0},

where A(x) = A0 +A1x1 + . . .+Anxn ∈ Sn, and Ai ∈ Sn, i = 1, . . . , n. Hint: You are allowed to use a

special form of Schur complement, described as follows: Suppose A ≻ 0. Then[
A b

bT c

]
≽ 0 ⇐⇒ c− bTA−1b ≥ 0.

Solution: We will show the epigraph {(x, t) | xT (A(x))−1x ≤ t, A(x) ≻ 0} is convex. Using the

Schur complement, the epigraph can be written as{
(x, t)

∣∣∣∣ [A(x) x

xT t

]
≽ 0, A(x) ≻ 0

}
.

[
A(x) x

xT t

]
and A(x) are affine mapping of (x, t). So the epigraph is convex.

Q4. Let f0, . . . , fn : R → R be given continuous functions. We consider the problem of approximating

f0 as linear combination of f1, . . . , fn. For x ∈ Rn, we say that f = x1f1 + . . .+ xnfn approximates f0
with tolerance ϵ > 0 over the interval [0, T ] if |f(t) − f0(t)| ≤ ϵ for 0 ≤ t ≤ T . Now we choose a fixed

tolerance ϵ > 0 and define the approximation width as the largest T such that f approximates f0 over

the interval [0, T ]:

W (x) = sup{T | |x1f1(t) + . . .+ xnfn(t)− f0(t)| ≤ ϵ for 0 ≤ t ≤ T}.

Show that W is quasiconcave.

Solution:

We need to show the set Rα = {x | W (x) ≥ α} is convex for any α. We have

W (x) ≥ α

⇐⇒for all T ′ < α, there exists T ≥ T ′ such that |x1f1(t) + . . .+ xnfn(t)− f0(t)| ≤ ϵ for t ∈ [0, T ]

⇐⇒it holds true that |x1f1(t) + . . .+ xnfn(t)− f0(t)| ≤ ϵ for t ∈ [0, α)

Therefore we can rewrite Rα as

Rα = {x | |x1f1(t) + . . .+ xnfn(t)− f0(t)| ≤ ϵ, t ∈ [0, α)}

=
∩

t∈[0,α)

{x | |x1f1(t) + . . .+ xnfn(t)− f0(t)| ≤ ϵ}.
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Rα is the intersection of convex sets and thus is convex.

Q5. Show that f(X) = (detX)1/n is concave on Sn
++. (Hint: Use the same method of proof for showing

the concavity of the log determinant function; see page 74 of the textbook)

Solution: Let U ∈ Sn
++ and V ∈ Sn. We will show that

g(t) = (detU + tV )1/n, dom g = {t ∈ R | U + tV ∈ Sn
++}

is concave. We can write g(t) as

g(t) = (det(U + tV ))1/n

= (det(U1/2U1/2 + tV ))1/n (as U is PD, U1/2 ∈ Sn
++ exists and is invertible)

= (detU)1/n(det(I + tU−1/2V U−1/2))1/n

= (detU)1/n(det(I + tQΛQT ))1/n (use EVD QΛQT = U−1/2V U−1/2)

= (detU)1/n

(
n∏

i=1

(1 + tλi)

)1/n

Therefore, g(t) is the a (scaled) composition of geometric mean (which is concave) and affine function,

and thus concave.

4


