ELEG5481 Signal Processing Optimization Techniques
 Assignment Solution 3

Feb. 27, 2013

Q1. The following functions are either convex, concave, or neither convex nor concave. Identify their convexity/concavity, and provide your answer with a proof.
(a)

$$
f(x)=\max \{\|A P x-b\| \mid P \text { is a permutation matrix }\}
$$

with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$. Note that a permutation matrix P is a square matrix that has exactly one entry 1 in each row and column and 0 s elsewhere.
(b)

$$
f(x)=\|A x-b\|_{2}^{2}-\gamma\|x\|_{2}^{2}
$$

where $\operatorname{dom} f=\mathbf{R}^{n}, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$, and $\gamma>0$.
(c)

$$
f(X)=\lambda_{\min }(X)=\inf _{y \in \mathbf{R}^{n}, y \neq 0} \frac{y^{T} X y}{y^{T} y}, \quad \operatorname{dom} f=\mathbf{S}^{n}
$$

(d)

$$
f(x)=\int_{0}^{2 \pi} \log p(x, \omega) d \omega,
$$

where

$$
p(x, \omega)=x_{1}+x_{2} \cos (\omega)+x_{3} \cos (2 \omega)+\ldots x_{n} \cos ((n-1) \omega)
$$

and $\operatorname{dom} f=\{x \mid p(x, \omega)>0,0 \leq \omega \leq 2 \pi\}$. (Note that $\log (\cdot)$ is the natural \log function.)
(e) The difference between the maximum and minimum value of a polynomial on a given interval, as a function of its coefficients:

$$
f(x)=\sup _{t \in[a, b]} p(t)-\inf _{t \in[a, b]} p(t)
$$

where $p(t)=x_{1}+x_{2} t+x_{3} t^{2}+\ldots+x_{n} t^{n-1}$, and a and b are real constants with $a<b$.
(f)

$$
f(x)=\sum_{i=1}^{m} e^{-1 / f_{i}(x)}, \quad \operatorname{dom} f=\left\{x \mid f_{i}(x)<0, i=1, \ldots, m\right\} .
$$

where the functions f_{i} are convex.

Solution:

(a) For a given $P,\|A P x-b\|$ is a convex function of x. Therefore

$$
f(x)=\max _{P: P \text { is a permuation matrx }}\|A P x-b\|
$$

is convex.
(b)

$$
\begin{aligned}
f(x) & =x^{T} A^{T} A x-2 x^{T} A^{T} b+\|b\|_{2}^{2}-\gamma x^{T} x^{T} \\
& =x^{T}\left(A^{T} A-\gamma I\right) x-2 x^{T} A^{T} b+\|b\|_{2}^{2}
\end{aligned}
$$

This is a quadratic function and the convexity depends on whether

$$
A^{T} A-\gamma I \succeq 0
$$

can be achieved. Likewise,

$$
f \text { concave } \Longleftrightarrow A^{T} A-\gamma I \preceq 0
$$

Consider SVD $A=U \Sigma V^{T}$. Then

$$
A^{T} A=V \Sigma^{2} V^{T}
$$

This is also symmetric eigendecomposition, with $Q=V$ and $\Lambda=\Sigma^{2}$. Then we have

$$
A^{T} A-\gamma I=V \Sigma^{2} V^{T}-\gamma I=V\left(\Sigma^{2}-\gamma I\right) V^{T}
$$

This is actually the eigendecomposition of $A^{T} A-\gamma I$. Hence

$$
\begin{aligned}
& A^{T} A-\gamma I \succeq 0 \Longleftrightarrow \sigma_{i}^{2}-\gamma \geq 0, i=1, \ldots, n \\
& A^{T} A-\gamma I \preceq 0 \Longleftrightarrow \sigma_{i}^{2}-\gamma \leq 0, i=1, \ldots, n
\end{aligned}
$$

Concluding, f is convex if $\gamma \leq \sigma_{\min }^{2}, f$ is concave if $\gamma \geq \sigma_{\max }^{2}$, and f is neither convex nor concave, otherwise.
(c) Let $g_{y}(X)=\frac{y^{T} X y}{y^{T} y}=\operatorname{tr}\left(X y y^{T}\right) / y^{T} y . g_{y}(X)$ is linear in X. Since $f(X)=\inf _{y \in \mathbf{R}^{n}, y \neq 0} g_{y}(X)$ is a point-wise infimum of a concave (linear) function, f is concave.
(d) Let $g(x, \omega)=\log \sum_{i=1}^{n} x_{i} \cos ((i-1) \omega)$. For each $\omega, g(x, \omega)$ is a concave function (in x with domain $\operatorname{dom} f$). Since f is an integration of all $g(x, \omega), f$ is concave.
(e) $p(t)$ is an affine function of x. Therefore $\sup _{t \in[a, b]} p(t)$ is convex in x. Similarly, $\inf _{t \in[a, b]} p(t)$ is concave in x. Therefore $f(x)$ is convex in x.
(f) Consider the function $g(t)=e^{-1 / t}$ with domain $t<0$. We have $g^{\prime}(t)=\frac{1}{t^{2}} e^{-1 / t}$ and $g^{\prime \prime}(t)=$ $\left(-\frac{2}{t^{3}}+\frac{1}{t^{4}}\right) e^{-1 / t} \geq 0$ on $t \geq 0$. Therefore $g(t)$ is convex. Let $\tilde{g}(t)$ be the extended-value extension of $g(t)$. Then $\tilde{g}(t)$ is nondecreasing. By composition rule $g\left(f_{i}(x)\right)$ is convex. Therefore $f(x)=\sum_{i=1}^{m} g\left(f_{i}(x)\right)$ is convex.

Q2. Let $p(x)$ and $q(x)$ be functions where $p(x)>0$ for $x \in S, q(x)>0$ for $x \in S, \int_{S} p(x) d x=1$ and $\int_{S} q(x) d x=1$. Show that

$$
\int_{S} p(x) \log q(x) d x \leq \int_{S} p(x) \log p(x) d x .
$$

Solution:

We need a little variation of Jensen's inequality: For a convex $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f\left(\sum_{i=1}^{n} \theta_{i} g\left(x_{i}\right)\right) \leq \sum_{i=1}^{n} \theta_{i} f\left(g\left(x_{i}\right)\right)
$$

for $\sum_{i=1}^{n} \theta_{i}=1$, and for any function g. Likewise,

$$
f\left(\int_{S} g(x) p(x) d x\right) \leq \int_{S} p(x) f(g(x)) d x
$$

Now, let $f(x)=-\log x$, and $g(x)=q(x) / p(x)$. By the above Jensen's inequality,

$$
\begin{aligned}
& -\log \left(\int_{S} p(x) \frac{q(x)}{p(x)} d x\right) \leq-\int_{S} p(x) \log \frac{q(x)}{p(x)} d x \\
& \Longleftrightarrow-\log 1 \leq \int_{S} p(x) \log p(x) d x-\int_{S} p(x) \log q(x) d x \\
& \Longleftrightarrow \int_{S} p(x) \log q(x) d x \leq \int_{S} p(x) \log p(x) d x
\end{aligned}
$$

Note: It is interesting to see when the inequality can be achieved. This requires

$$
\int_{S} p(x) \log \frac{q(x)}{p(x)} d x=0
$$

Since $p(x)>0, \forall x \in S$, the above condition holds iff

$$
\log \frac{q(x)}{p(x)}=0, \forall x \in S \Longleftrightarrow p(x)=q(x), \forall x \in S
$$

Q3. (15\%) Show that the following function is convex.

$$
f(x)=x^{T}(A(x))^{-1} x, \quad \operatorname{dom} f=\{x \mid A(x) \succ 0\}
$$

where $A(x)=A_{0}+A_{1} x_{1}+\ldots+A_{n} x_{n} \in \mathbf{S}^{n}$, and $A_{i} \in \mathbf{S}^{n}, i=1, \ldots, n$. Hint: You are allowed to use a special form of Schur complement, described as follows: Suppose $A \succ 0$. Then

$$
\left[\begin{array}{cc}
A & b \\
b^{T} & c
\end{array}\right] \succeq 0 \Longleftrightarrow c-b^{T} A^{-1} b \geq 0
$$

Solution: We will show the epigraph $\left\{(x, t) \mid x^{T}(A(x))^{-1} x \leq t, A(x) \succ 0\right\}$ is convex. Using the Schur complement, the epigraph can be written as

$$
\left\{(x, t) \left\lvert\,\left[\begin{array}{cc}
A(x) & x \\
x^{T} & t
\end{array}\right] \succeq 0\right., A(x) \succ 0\right\} .
$$

$\left[\begin{array}{cc}A(x) & x \\ x^{T} & t\end{array}\right]$ and $A(x)$ are affine mapping of (x, t). So the epigraph is convex.

Q4. Let $f_{0}, \ldots, f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be given continuous functions. We consider the problem of approximating f_{0} as linear combination of f_{1}, \ldots, f_{n}. For $x \in \mathbf{R}^{n}$, we say that $f=x_{1} f_{1}+\ldots+x_{n} f_{n}$ approximates f_{0} with tolerance $\epsilon>0$ over the interval $[0, T]$ if $\left|f(t)-f_{0}(t)\right| \leq \epsilon$ for $0 \leq t \leq T$. Now we choose a fixed tolerance $\epsilon>0$ and define the approximation width as the largest T such that f approximates f_{0} over the interval $[0, T]$:

$$
W(x)=\sup \left\{T| | x_{1} f_{1}(t)+\ldots+x_{n} f_{n}(t)-f_{0}(t) \mid \leq \epsilon \text { for } 0 \leq t \leq T\right\} .
$$

Show that W is quasiconcave.

Solution:

We need to show the set $R_{\alpha}=\{x \mid W(x) \geq \alpha\}$ is convex for any α. We have $W(x) \geq \alpha$
\Longleftrightarrow for all $T^{\prime}<\alpha$, there exists $T \geq T^{\prime}$ such that $\left|x_{1} f_{1}(t)+\ldots+x_{n} f_{n}(t)-f_{0}(t)\right| \leq \epsilon$ for $t \in[0, T]$
\Longleftrightarrow it holds true that $\left|x_{1} f_{1}(t)+\ldots+x_{n} f_{n}(t)-f_{0}(t)\right| \leq \epsilon$ for $t \in[0, \alpha)$
Therefore we can rewrite R_{α} as

$$
\begin{aligned}
R_{\alpha} & =\left\{x| | x_{1} f_{1}(t)+\ldots+x_{n} f_{n}(t)-f_{0}(t) \mid \leq \epsilon, t \in[0, \alpha)\right\} \\
& =\bigcap_{t \in[0, \alpha)}\left\{x| | x_{1} f_{1}(t)+\ldots+x_{n} f_{n}(t)-f_{0}(t) \mid \leq \epsilon\right\} .
\end{aligned}
$$

R_{α} is the intersection of convex sets and thus is convex.

Q5. Show that $f(X)=(\operatorname{det} X)^{1 / n}$ is concave on \mathbf{S}_{++}^{n}. (Hint: Use the same method of proof for showing the concavity of the log determinant function; see page 74 of the textbook)

Solution: Let $U \in \mathbf{S}_{++}^{n}$ and $V \in \mathbf{S}^{n}$. We will show that

$$
g(t)=(\operatorname{det} U+t V)^{1 / n}, \quad \operatorname{dom} g=\left\{t \in \mathbf{R} \mid U+t V \in \mathbf{S}_{++}^{n}\right\}
$$

is concave. We can write $g(t)$ as

$$
\begin{array}{rlr}
g(t) & =(\operatorname{det}(U+t V))^{1 / n} \\
& =\left(\operatorname{det}\left(U^{1 / 2} U^{1 / 2}+t V\right)\right)^{1 / n} \quad \quad \text { (as } U \text { is PD, } U^{1 / 2} \in \mathbf{S}_{++}^{n} \text { exists and is invertible) } \\
& =(\operatorname{det} U)^{1 / n}\left(\operatorname{det}\left(I+t U^{-1 / 2} V U^{-1 / 2}\right)\right)^{1 / n} \\
& =(\operatorname{det} U)^{1 / n}\left(\operatorname{det}\left(I+t Q \Lambda Q^{T}\right)\right)^{1 / n} & \left.\quad \text { (use EVD } Q \Lambda Q^{T}=U^{-1 / 2} V U^{-1 / 2}\right) \\
& =(\operatorname{det} U)^{1 / n}\left(\prod_{i=1}^{n}\left(1+t \lambda_{i}\right)\right)^{1 / n} &
\end{array}
$$

Therefore, $g(t)$ is the a (scaled) composition of geometric mean (which is concave) and affine function, and thus concave.

