ELEG5481 Signal Processing Optimization Techniques

 Assignment Solution 1

 Assignment Solution 1}

Feb. 21, 2013

Q1. Show that following functions are norms.
(a) $f(x)=\|T x\|$, where $\|\cdot\|$ is a norm, $T \in \mathbf{C}^{n \times n}$ is nonsingular, and $x \in \mathbf{C}^{n}$. In particular, $f(x)=$ $\sqrt{x^{T} P x}$ with $P \succ 0$ is a norm.
(b) $f(X)=\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|X_{i j}\right|\right\}$, where $X \in \mathbf{C}^{m \times n}$.
(c) $f(X)=\sup \left\{\|X u\|_{a} \mid\|u\|_{b} \leq 1\right\}$, where $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are norms, and $X \in \mathbf{C}^{m \times n}$.

Solution:

(a) 1.) $\|T x\| \geq 0$.
2.) $\|T x\|=0$ i.f.f. $T x=0$, since $\|\cdot\|$ is a norm. Moreover, $T x=0$ i.f.f. $x=0$ since T is nonsingular.
3.) $\|T(c x)\|=|c|\|T x\|$.
4.) $\|T(x+y)\|=\|T x+T y\| \leq\|T x\|+\|T y\|$.
(b) 1.) Obviously $f(X) \geq 0$.
2.) Still obviously $\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|X_{i j}\right|\right\}=0$ i.f.f. $X_{i j}=0$ for all i, j.
3.) $f(c X)=\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|c X_{i j}\right|\right\}=|c| \max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|X_{i j}\right|\right\}=|c| f(X)$.
4.)

$$
\begin{aligned}
f(X+Y) & \left.=\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|X_{i j}+Y_{i j}\right|\right\} \leq \max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left(\left|X_{i j}\right|+\left|Y_{i j}\right|\right)\right\}=\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|X_{i j}\right|+\sum_{j=1}^{n}\left|Y_{i j}\right|\right)\right\} \\
& \left.\leq \max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|X_{i j}\right|\right\}+\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|Y_{i j}\right|\right)\right\}=f(X)+f(Y) .
\end{aligned}
$$

(c) 1.) $f(X) \geq\|X 0\|_{a}=0$, where 0 is the zero vector.
2.) Let $\mathbf{0}$ denote the zero matrix. $f(\mathbf{0})=\sup \left\{\|0\|_{a} \mid\|u\|_{b} \leq 1\right\}=0$. Conversely, $f(X)=0$ implies that $\|X u\|_{a}=0$ for all u such that $\|u\|_{b} \leq 1$. By setting $u=e_{i} /\left\|e_{i}\right\|_{b}$, where e_{i} is the all zero vector except the i th entry being one, we have that the i th column of X is a zero vector.
3.) $f(c X)=\sup \left\{\|c X u\|_{a} \mid\|u\|_{b} \leq 1\right\}=|c| \sup \left\{\|X u\|_{a} \mid\|u\|_{b} \leq 1\right\}=|c| f(X)$.
4.) $f(X+Y)=\sup \left\{\|(X+Y) u\|_{a} \mid\|u\|_{b} \leq 1\right\} \leq \sup \left\{\|\left(X u\left\|_{a} \mid\right\| u \|_{b} \leq 1\right\}+\sup \left\{\|Y u\|_{a} \mid\|u\|_{b} \leq\right.\right.$ $1\}=f(X)+f(Y)$.

Q2. Prove that

$$
\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2}
$$

Solution:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \times 1 \leq \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}} \sqrt{\sum_{i=1}^{n} 1}=\sqrt{n}\|x\|_{2}
$$

$$
\begin{gathered}
\|x\|_{1}^{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}\right|\left|x_{j}\right|=\sum_{i=1}^{n}\left|x_{i}\right|^{2}+\sum_{i \neq j}\left|x_{i}\right|\left|x_{j}\right| \geq \sum_{i=1}^{n}\left|x_{i}\right|^{2}=\|x\|_{2}^{2} \\
\Longrightarrow\|x\|_{1} \geq\|x\|_{2}
\end{gathered}
$$

Q3. The matrix p-norm is defined as

$$
\|X\|_{p}=\max \left\{\|X u\|_{p} \mid\|u\|_{p} \leq 1\right\}
$$

Show the following results
(a) $\|X\|_{\infty}=\max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|X_{i j}\right|\right\}$.
(b) $\|X\|_{2}=\sigma_{\max }(X)=\sqrt{\lambda_{\max }\left(X^{T} X\right)}$, where $\sigma_{\max }(X)$ denotes the largest singular value of X, and $\lambda_{\max }(A)$ the largest eigenvalue of A.

Solution:

(a) Let x_{i}^{T} denote the i th row of X. Then we have

$$
\begin{aligned}
\|X\|_{\infty} & =\max _{\|u\|_{\infty} \leq 1}\left\{\|X u\|_{\infty}\right\} \\
& =\max _{\|u\|_{\infty} \leq 1}\left\{\max _{i=1, \ldots, m}\left|x_{i}^{T} u\right|\right\} \\
& =\max _{i=1, \ldots, m}\left\{\max _{\|u\|_{\infty} \leq 1}\left|x_{i}^{T} u\right|\right\} \\
& =\max _{i=1, \ldots, m}\left\{\sum_{j=1}^{n}\left|X_{i j}\right|\right\}
\end{aligned}
$$

(b)

$$
\|X\|_{2}^{2}=\sup \left\{\|X u\|_{2}^{2} \mid\|u\|_{2} \leq 1\right\}=\sup \left\{u^{T} X^{T} X u \mid\|u\|_{2} \leq 1\right\}
$$

Since

$$
\frac{u^{T} X^{T} X u}{u^{T} u} \leq \lambda_{\max }\left(X^{T} X\right)
$$

and the upper bound is achieved when u is the principal eigenvector. Therefore,

$$
\|X\|_{2}^{2}=\lambda_{\max }\left(X^{T} X\right)
$$

Let $X^{T} X=Q \Lambda Q^{T}$, and $X=U \Sigma V^{T}$. Since

$$
X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

we have

$$
\sigma_{i}^{2}=\lambda_{i}\left(X^{T} X\right) \Leftrightarrow \sigma_{i}=\sqrt{\lambda_{i}\left(X^{T} X\right)}
$$

Q4. Verify the following: Given that $A \in \mathbf{C}^{n \times n}$ is Hermitian,
(a) $\|A\|_{F}^{2}=\sum_{i=1}^{n} \lambda_{i}^{2}$.
(b) $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$
(c) $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.

Solution: Use eigendecomposition $A=Q \Lambda Q^{H}$.
(a)

$$
\|A\|_{F}^{2}=\operatorname{tr}\left(A^{H} A\right)=\operatorname{tr}\left(Q \Lambda Q^{H} Q \Lambda Q^{H}\right)=\operatorname{tr}\left(\Lambda^{2}\right)=\sum_{i} \lambda_{i}^{2}
$$

(b)

$$
\operatorname{det}(A)=\operatorname{det}\left(Q \Lambda Q^{H}\right)=\operatorname{det}\left(Q^{H} Q \Lambda\right)=\operatorname{det}(\Lambda)=\prod_{i} \lambda_{i}
$$

(c)

$$
\operatorname{tr}(A)=\operatorname{tr}\left(Q \Lambda Q^{H}\right)=\operatorname{tr}\left(Q^{H} Q \Lambda\right)=\operatorname{tr}(\Lambda)=\sum_{i} \lambda_{i}
$$

Q5. Show the following results
(a) Suppose $A \in \mathbf{R}^{n \times n}$ is positive semidefinite. If $A_{i, i}=0$ for some i, then $A_{j, i}$ and $A_{i, j}$ are zeros for all $j=1, \ldots, n$.
(b) Suppose $A \in \mathbf{C}^{n \times n}$ is positive semidefinite. If $A_{i, i}=1$ for $i=1, \ldots, n$, then $\left|A_{i, j}\right| \leq 1$ for any i, j.

Solution:

(a) Consider an x whose i th entry is x_{i}, j th entry one, and all other entries zeros. Then we have $x^{T} A x=A_{j, j}+2 A_{i, j} x_{i} \geq 0$ for any x_{i}. But this is impossible unless $A_{i, j}=0$. To see why, suppose $A_{i, j}>0$. Then for $x_{i}<-A_{j, j} / 2 A_{i, j}$, we have $x^{T} A x<0$. Similarly, $A_{i, j}$ can not be negative.
(b) Consider an x whose i th entry is $1, j$ th entry is $e^{\mathbf{j} \theta}$, and other entries zeros, where $\mathbf{j}=\sqrt{-1}$ and $\theta \in \mathbf{R}$. Then we have $x^{H} A x=A_{i, i}+A_{j, j}+2 \mathcal{R}\left\{A_{i, j} e^{\mathbf{j} \theta}\right\}=2+2 \mathcal{R}\left\{A_{i, j} e^{\mathbf{j} \theta}\right\} \geq 0$. Thus $\left|A_{i, j}\right| \leq 1$.

Q6. (10\%) Let $X \in \mathbf{S}^{n}$. Show that

$$
\operatorname{tr}(X Y) \geq 0 \quad \forall Y \in \mathbf{S}_{+}^{n}
$$

if and only if X is PSD.

Solution: The "if" part. Let $X=Q \Lambda Q^{T}$ denote the EVD. Then we have

$$
\operatorname{tr} X Y=\operatorname{tr} Q \Lambda Q^{T} Y=\operatorname{tr} \Lambda\left(Q^{T} Y Q\right)=\sum_{i=1}^{n} \lambda_{i}\left[Q^{T} Y Q\right]_{i}
$$

Since Y is PSD, so is $Q^{T} Y Q$, and thus $\left[Q^{T} Y Q\right]_{i} \geq 0$. Therefore, $\operatorname{tr} X Y \geq 0$.
The "only if" part. We have

$$
\operatorname{tr} X Y=\operatorname{tr} Q \Lambda Q^{T} Y=\operatorname{tr} \Lambda\left(Q^{T} Y Q\right) \geq 0, \text { for all } Y \in \mathbf{S}_{+}^{n}
$$

Setting $Y=Q e_{i} e_{i}^{T} Q^{T}$, we have $\operatorname{tr} X Y=\lambda_{i} \geq 0$.

