ELEG5481 Signal Processing Optimization Techniques Assignment 5

Apr. 22, 2013
Deadline: 5:00pm, May. 6, 2013

Q1. (30\%) Consider the following problem

$$
\begin{aligned}
& \min _{x} 47 x_{1}+93 x_{2}+17 x_{3}-93 x_{4} \\
& \text { s.t. }\left[\begin{array}{cccc}
-1 & -6 & 1 & 3 \\
-1 & -2 & 7 & 1 \\
0 & 3 & -10 & -1 \\
-6 & -11 & -2 & 12 \\
1 & 6 & -1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \preceq\left[\begin{array}{c}
-3 \\
5 \\
-8 \\
-7 \\
4
\end{array}\right] .
\end{aligned}
$$

(a) Write down the dual problem.
(b) Use CVX to solve the primal and the dual problem to obtain a primal optimal solution x^{\star} and a dual optimal solution λ^{\star}, respectively. You are required to send via email your matlab code to the tutor.
(c) Write down the KKT conditions. Then, verify numerically by matlab that x^{\star} and λ^{\star} satisfy the KKT conditions.

Q2. (30%) Implement the subgradient method in matlab to solve the following matrix completion problem.

$$
\begin{aligned}
\min _{X} & \|X\|_{*} \\
\text { s.t. } & X_{i j}=A_{i j}, \quad(i, j) \in \Omega,
\end{aligned}
$$

where $\left\{A_{i j}\right\}_{(i, j) \in \Omega}$ is given. Download test data from http://dsp.ee.cuhk.edu.hk/eleg5481/homework/ hw5_q2data.mat. The data includes two matrices $A \in \mathbf{R}^{m \times n}$ and $I \in \mathbf{R}^{m \times n}$. I is a zero-one matrix indicating the indices in Ω. For example, if $I_{10,5}=1$, then $(10,5)$ belongs to Ω; if $I_{20,3}=0$, then $(20,3)$ does not belong to Ω. Write down the 5×5 leading principal submatrix of X obtained by your subgradient method. Also, you are required to send via email your matlab code to the tutor.
Hint 1: A subgradient of the nuclear norm $\|X\|_{*}$ is given by $\sum_{i=1}^{r} u_{i} v_{i}^{T}$, where r is the rank of X, and u_{i} and v_{i} are left and right singular vectors corresponding to positive singular value σ_{r}.
Hint 2: The projection of X onto the set $C=\left\{X \mid X_{i j}=A_{i j}, \quad(i, j) \in \Omega\right\}$ is as follows. Let \tilde{X} be the projection of X onto C. We have

$$
\tilde{X}_{i j}= \begin{cases}A_{i j}, & (i, j) \in \Omega \\ X_{i j}, & \text { otherwise }\end{cases}
$$

Hint 3: You may use the following parameters: stepsize $\alpha_{k}=10 / \sqrt{k}$ and number of iterations 5000. You are encouraged to try other parameters as well.

Q3. (20\%) Suppose $a \in \mathbf{R}^{n}$ with $a_{1} \geq a_{2} \geq \ldots \geq a_{n}>0$, and $b \in \mathbf{R}^{n}$ with $b_{k}=1 / a_{k}$. Derive the KKT conditions for the convex optimization problem

$$
\begin{aligned}
& \min _{x}-\log \left(a^{T} x\right)-\log \left(b^{T} x\right) \\
& \text { s.t. } x \succeq 0, \quad \mathbf{1}^{T} x=1 .
\end{aligned}
$$

Show that $x=(1 / 2,0, \ldots, 0,1 / 2)$ is optimal.

Q4. (a) (10\%) Consider the following problem.

$$
\begin{align*}
& \min _{X} \operatorname{tr}(C X) \\
& \text { s.t. } \operatorname{tr}(A X) \leq 1, \operatorname{tr}(B X)=1, \tag{1}\\
& \quad X \succeq 0,
\end{align*}
$$

where $A, B, C \in \mathbf{S}^{n}$ are symmetric matrices. Assume that this problem is strictly feasible. Show that there exists an optimal solution X^{\star} whose rank satisfies $\operatorname{rank}\left(X^{\star}\right) \leq 1$.
Hint: i) You can use the following matrix decomposition result [Ye-Zhang'03]. Suppose that $X \in \mathbf{S}_{+}^{n}$ has rank r, and $F \in \mathbf{S}^{n}$ is given symmetric matrix. Then, there exists a set of vectors $\left\{x_{1}, \ldots, x_{r}\right\} \subset$ \mathbf{R}^{n} such that

$$
X=\sum_{j=1}^{r} x_{j} x_{j}^{T}
$$

and

$$
x_{j}^{T} F x_{j}=\frac{\operatorname{tr}(F X)}{r}, \quad j=1, \ldots, r
$$

ii) Use the KKT condtions.
(b) (10%) Consider the S-Lemma, which is widely used in many areas. Let $F_{1}, F_{2} \in \mathbf{S}^{n}, g_{1}, g_{2} \in \mathbf{R}^{n}$, and $h_{1}, h_{2} \in \mathbf{R}$. Assume that there exists a point x_{0} such that $x_{0} F_{1} x_{0}+2 g_{1}^{T} x_{0}+h_{1}<0$. The S-Lemma states that

$$
x^{T} F_{2} x+2 g_{2}^{T} x+h_{2} \leq 0 \quad \text { for all } x \text { satisfying } x^{T} F_{1} x+2 g_{1}^{T} x+h_{1} \leq 0
$$

holds if and only if there exists a $\lambda \geq 0$ such that

$$
\left[\begin{array}{ll}
F_{2} & g_{2} \\
g_{2}^{T} & h_{2}
\end{array}\right] \preceq \lambda\left[\begin{array}{ll}
F_{1} & g_{1} \\
g_{1}^{T} & h_{1}
\end{array}\right] .
$$

Prove the S-Lemma by using the result in Q.4(a).

Reference:

Y. Ye and S. Zhang, "New results on quadratic minimization," SIAM J. Optim., 2003.

