ELEG5481 Signal Processing Optimization Techniques Assignment 3

Feb. 28, 2013

Deadline: 5:00pm, Mar. 11, 2013

Q1. (40%) The following functions are either convex, concave, or neither convex nor concave. Identify their convexity/concavity, and provide your answer with a proof.(a)

 $f(x) = \max\{\|APx - b\| \mid P \text{ is a permutation matrix }\}$

with $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$. Note that a permutation matrix P is a square matrix that has exactly one entry 1 in each row and column and 0s elsewhere.

(b)

(c)

$$f(x) = \|Ax - b\|_2^2 - \gamma \|x\|_2^2$$

where $\operatorname{dom} f = \mathbf{R}^n$, $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, and $\gamma > 0$.

$$f(X) = \lambda_{\min}(X) = \inf_{y \in \mathbf{R}^n, y \neq 0} \frac{y^T X y}{y^T y}, \quad \mathbf{dom} f = \mathbf{S}^n$$

(d)

$$f(x) = \int_0^{2\pi} \log p(x, \omega) d\omega,$$

where

$$p(x,\omega) = x_1 + x_2 \cos(\omega) + x_3 \cos(2\omega) + \dots + x_n \cos((n-1)\omega),$$

and $\mathbf{dom} f = \{x \mid p(x,\omega) > 0, 0 \le \omega \le 2\pi\}$. (Note that $\log(\cdot)$ is the natural log function.)

(e) The difference between the maximum and minimum value of a polynomial on a given interval, as a function of its coefficients:

$$f(x) = \sup_{t \in [a,b]} p(t) - \inf_{t \in [a,b]} p(t),$$

where $p(t) = x_1 + x_2t + x_3t^2 + \ldots + x_nt^{n-1}$, and a and b are real constants with a < b. (f)

$$f(x) = \sum_{i=1}^{m} e^{-1/f_i(x)}, \quad \mathbf{dom} f = \{x \mid f_i(x) < 0, \ i = 1, \dots, m\}.$$

where the functions f_i are convex.

Q2. (15%) Let p(x) and q(x) be functions where p(x) > 0 for $x \in S$, q(x) > 0 for $x \in S$, $\int_S p(x)dx = 1$ and $\int_S q(x)dx = 1$. Show that

$$\int_{S} p(x) \log q(x) dx \le \int_{S} p(x) \log p(x) dx.$$

Q3. (15%) Show that the following function is convex.

$$f(x) = x^T (A(x))^{-1} x, \quad \text{dom} f = \{x \mid A(x) \succ 0\},\$$

where $A(x) = A_0 + A_1 x_1 + \ldots + A_n x_n \in \mathbf{S}^n$, and $A_i \in \mathbf{S}^n$, $i = 1, \ldots, n$. Hint: You are allowed to use a special form of Schur complement, described as follows: Suppose $A \succ 0$. Then

$$\begin{bmatrix} A & b \\ b^T & c \end{bmatrix} \succeq 0 \iff c - b^T A^{-1} b \ge 0.$$

Q4. (15%) Let $f_0, \ldots, f_n : \mathbf{R} \to \mathbf{R}$ be given continuous functions. We consider the problem of approximating f_0 as linear combination of f_1, \ldots, f_n . For $x \in \mathbf{R}^n$, we say that $f = x_1 f_1 + \ldots + x_n f_n$ approximates f_0 with tolerance $\epsilon > 0$ over the interval [0,T] if $|f(t) - f_0(t)| \le \epsilon$ for $0 \le t \le T$. Now we choose a fixed tolerance $\epsilon > 0$ and define the approximation width as the largest T such that f approximates f_0 over the interval [0,T]:

$$W(x) = \sup\{T \mid |x_1 f_1(t) + \ldots + x_n f_n(t) - f_0(t)| \le \epsilon \text{ for all } 0 \le t \le T\}.$$

Show that W(x) is quasiconcave.

Q5. (15%) Show that $f(X) = (\det X)^{1/n}$ is concave on \mathbf{S}_{++}^n . (Hint: Use the same method of proof for showing the concavity of the log determinant function; see page 74 of the textbook)