ELEG5481 Signal Processing Optimization Techniques
 Assignment 3

Feb. 28, 2013
Deadline: 5:00pm, Mar. 11, 2013

Q1. (40\%) The following functions are either convex, concave, or neither convex nor concave. Identify their convexity/concavity, and provide your answer with a proof.
(a)

$$
f(x)=\max \{\|A P x-b\| \mid P \text { is a permutation matrix }\}
$$

with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$. Note that a permutation matrix P is a square matrix that has exactly one entry 1 in each row and column and 0 s elsewhere.
(b)

$$
f(x)=\|A x-b\|_{2}^{2}-\gamma\|x\|_{2}^{2}
$$

where $\operatorname{dom} f=\mathbf{R}^{n}, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$, and $\gamma>0$.
(c)

$$
f(X)=\lambda_{\min }(X)=\inf _{y \in \mathbf{R}^{n}, y \neq 0} \frac{y^{T} X y}{y^{T} y}, \quad \operatorname{dom} f=\mathbf{S}^{n}
$$

(d)

$$
f(x)=\int_{0}^{2 \pi} \log p(x, \omega) d \omega
$$

where

$$
p(x, \omega)=x_{1}+x_{2} \cos (\omega)+x_{3} \cos (2 \omega)+\ldots x_{n} \cos ((n-1) \omega)
$$

and $\operatorname{dom} f=\{x \mid p(x, \omega)>0,0 \leq \omega \leq 2 \pi\}$. (Note that $\log (\cdot)$ is the natural log function.)
(e) The difference between the maximum and minimum value of a polynomial on a given interval, as a function of its coefficients:

$$
f(x)=\sup _{t \in[a, b]} p(t)-\inf _{t \in[a, b]} p(t)
$$

where $p(t)=x_{1}+x_{2} t+x_{3} t^{2}+\ldots+x_{n} t^{n-1}$, and a and b are real constants with $a<b$.
(f)

$$
f(x)=\sum_{i=1}^{m} e^{-1 / f_{i}(x)}, \quad \operatorname{dom} f=\left\{x \mid f_{i}(x)<0, i=1, \ldots, m\right\}
$$

where the functions f_{i} are convex.

Q2. (15%) Let $p(x)$ and $q(x)$ be functions where $p(x)>0$ for $x \in S, q(x)>0$ for $x \in S, \int_{S} p(x) d x=1$ and $\int_{S} q(x) d x=1$. Show that

$$
\int_{S} p(x) \log q(x) d x \leq \int_{S} p(x) \log p(x) d x .
$$

Q3. (15\%) Show that the following function is convex.

$$
f(x)=x^{T}(A(x))^{-1} x, \quad \operatorname{dom} f=\{x \mid A(x) \succ 0\},
$$

where $A(x)=A_{0}+A_{1} x_{1}+\ldots+A_{n} x_{n} \in \mathbf{S}^{n}$, and $A_{i} \in \mathbf{S}^{n}, i=1, \ldots, n$. Hint: You are allowed to use a special form of Schur complement, described as follows: Suppose $A \succ 0$. Then

$$
\left[\begin{array}{cc}
A & b \\
b^{T} & c
\end{array}\right] \succeq 0 \Longleftrightarrow c-b^{T} A^{-1} b \geq 0
$$

Q4. (15%) Let $f_{0}, \ldots, f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be given continuous functions. We consider the problem of approximating f_{0} as linear combination of f_{1}, \ldots, f_{n}. For $x \in \mathbf{R}^{n}$, we say that $f=x_{1} f_{1}+\ldots+x_{n} f_{n}$ approximates f_{0} with tolerance $\epsilon>0$ over the interval $[0, T]$ if $\left|f(t)-f_{0}(t)\right| \leq \epsilon$ for $0 \leq t \leq T$. Now we choose a fixed tolerance $\epsilon>0$ and define the approximation width as the largest T such that f approximates f_{0} over the interval $[0, T]$:

$$
W(x)=\sup \left\{T \quad| | x_{1} f_{1}(t)+\ldots+x_{n} f_{n}(t)-f_{0}(t) \mid \leq \epsilon \text { for all } 0 \leq t \leq T\right\}
$$

Show that $W(x)$ is quasiconcave.

Q5. (15%) Show that $f(X)=(\operatorname{det} X)^{1 / n}$ is concave on \mathbf{S}_{++}^{n}. (Hint: Use the same method of proof for showing the concavity of the \log determinant function; see page 74 of the textbook)

