ELEG5481 Signal Processing Optimization Techniques Assignment 2

Feb. 18, 2013

Deadline: Feb. 27, 2013

Q1. (25%) Are the following sets convex? Give a brief justification for each of the following cases:

- (a) $C = \{x \mid a_1^T x \ge b_1 \text{ or } a_2^T x \ge b_2\}$ (b) $C = \{x \in \mathbf{R}^n \mid ||x||_2 = 1, \sum_{i=1}^n x_i = \sqrt{n}\}$ (c) $C = \{x | (a^T x + b) / (c^T x + d) \ge 1, c^T x + d > 0\}.$
- (d) $C = \{x | \max_{i=1,...,n} x_i \le a\}, \text{ where } a \in \mathbf{R}.$

Q2. (25%) Show that the following sets are convex:

- (a) $C = \{x \in \mathbf{R}^n \mid \sum_{i=1}^n |x_i| \le 1\}.$ (b) $C = \{x \mid ||x c|| \le a^T x + b\}$, where $||\cdot||$ is a norm.
- (c) $C = \{x \mid B(x, a) \subset S\}$, where $a \ge 0$, S is convex set, and $B(x, a) = \{y \mid \|y x\| \le a\}$.

$$C = \{ r \in \mathbf{R}^n \mid T(r) \succeq 0 \}$$

where $T: \mathbf{R}^n \to \mathbf{S}^n$ is given by

$$T(r) = \begin{bmatrix} r_1 & r_2 & \dots & r_{n-1} & r_n \\ r_2 & r_1 & r_2 & & r_{n-1} \\ \vdots & r_2 & \ddots & \ddots & \vdots \\ r_{n-1} & & \ddots & \ddots & r_2 \\ r_n & r_{n-1} & & r_2 & r_1 \end{bmatrix}.$$

Q3. (25%) Let $x_0, \ldots, x_k \in \mathbb{R}^n$. Consider the set of points that are closer (in Eluclidean norm) to x_0 than the other x_i , i.e.,

$$V = \{ x \in \mathbf{R}^n \mid ||x - x_0||_2 \le ||x - x_i||_2, \ i = 1, \dots, K \}.$$

V is called the Voronoi region around x_0 with respect to x_1, \ldots, x_K .

- (a) Show that V is a polyhedron, and thus convex. Express V in the form $V = \{x \mid Ax \leq b\}$.
- (b) Conversely, given a polyhedron P with nonempty interior, show how to find x_0, \ldots, x_K so that the polyhedron is the Voronoi region of x_0 with respect to x_1, \ldots, x_K .

Q4. (25%) Let K be a cone. The set

$$K^* = \{y \mid x^T y \ge 0, \text{ for all } x \in K\}$$

is called the dual cone of K. Show that K^* is always a convex cone. Moreover, determine the dual cones of the following sets:

(a)
$$K = \mathbf{R}_{+}^{n}$$
.

(b) $K = \mathbf{S}^n_+$ (in which case the dual cone should be written as $K^* = \{Y \mid \mathbf{tr}(XY) \ge 0, \text{ for all } X \in K\}$).