ELEG5481 Signal Processing Optimization Techniques Assignment 1

Feb. 1, 2013

Deadline: Feb. 20, 2013

Q1. (20%) Show that following functions are norms.

(a) f(x) = ||Tx||, where $||\cdot||$ is a norm, $T \in \mathbf{R}^{n \times n}$ is nonsingular.

(b) $f(X) = \max_{1 \le i \le m} \{\sum_{j=1}^{n} |X_{ij}|\}, \text{ where } X \in \mathbf{R}^{m \times n}.$

(c) $f(X) = \sup\{\|Xu\|_a \mid \|u\|_b \le 1\}$, where $\|\cdot\|_a$ and $\|\cdot\|_b$ are norms, and $X \in \mathbf{R}^{m \times n}$.

Q2. (20%) Prove that

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1.$$

Q3. (20%) The matrix *p*-norm is defined as

$$||X||_p = \max\{||Xu||_p \mid ||u||_p \le 1\}.$$

Show the following results

- (a) $||X||_{\infty} = \max_{1 \le i \le m} \{\sum_{j=1}^{n} |X_{ij}|\}.$
- (b) $||X||_2 = \sigma_{\max}(X) = \sqrt{\lambda_{\max}(X^T X)}$, where $\sigma_{\max}(X)$ denotes the largest singular value of X, and $\lambda_{\max}(A)$ the largest eigenvalue of A.

Q4. (20%) Verify the following: Given that $A \in \mathbf{C}^{n \times n}$ is Hermitian,

- (a) $||A||_F^2 = \sum_{i=1}^n \lambda_i^2$. (b) $\det(A) = \prod_{i=1}^n \lambda_i$
- (c) $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$.

Q5. (10%) Show the following results.

- (a) Suppose $A \in \mathbf{R}^{n \times n}$ is positive semidefinite. If $A_{i,i} = 0$ for some *i*, then $A_{j,i}$ and $A_{i,j}$ are zeros for all j = 1, ..., n.
- (b) Suppose $A \in \mathbb{C}^{n \times n}$ is positive semidefinite. If $A_{i,i} = 1$ for i = 1, ..., n, then $|A_{i,j}| \le 1$ for any i, j.

Q6. (10%) Let $X \in \mathbf{S}^n$. Show that

$$\operatorname{tr}(XY) \ge 0 \quad \forall \ Y \in \mathbf{S}^n_+$$

if and only if X is PSD.