ELEG5481: Signal Processing Optimization Techniques
Summary: Convex Sets and Convex Functions

1 Convex Sets

Affine Sets
e A set C C R" is said to be affine if

r1, 13 € C — 9$1+(1—9)J)2€C,V9€R

e A point
k
Y= Z eixiv
i=1
where 61 4+ 02 + ...+ 0, = 1, is an affine combination of the points x1, ..., x.

e An affine set can always be expressed as
C=V+uz,

where z, € C, and V is a subspace.

e The affine hull of a set C' (not necessarily affine) is
aﬁ"C:{Gller...Jerxk | r1,...,x, €C, 0; e R,i=1,... k, 91++9k:1}

The affine hull is the smallest affine set that contains C'.

Convex Sets

e A set C C R" is said to be convex if

r1,19 € C — 91‘1+(1—9)$2€C,V9€[0,1]

e A point
k
Y= Z eixiv
i=1
where 01,...,0, > 0,01 +605+ ...+ 6 =1, is a convex combination of the points x1, ..., xk.

e The convex hull of a set C' (not necessarily convex) is
convC = {01z1 + ...+ Opxp | x1,...,2, €C,0;, >0,i=1,.... k01 +...+ 0, =1}

The convex hull is the smallest convex set that contains C.

Convex Cones

o A set C' C R" is said to be a convex cone if

r1,r9 € C = Oix1 + 00 € C,V01,02 >0



A point
k
y= Z b, (9)
i=1
where 61,...,6; > 0, is a conic combination of the points z1, ..., .
The conic hull of a set C' (not necessarily convex) is

conicC = {bhz1 + ...+ Oy | 21,...,2, € C,0;, >0,i=1,...,k} (10)

Some Examples of Convex Sets

Hyperplane: {x | a’x = b}.
Halfspace: {z | a”x < b}.
Norm ball associated with norm ||.||:
Blxe,r) ={z | [l — 2| <r} (11)
where z. is the center and r is the radius. When ||.|| is the 2-norm it is known as the Euclidean norm.

Ellipsoid:
E={z|(x—z)'P Yz —2) <1} (12)

where P >~ 0.

Norm cone associated with ||.||:
K =A{(z,t) [ [l«]] <t} (13)

When ||.|| is the 2-norm K is called the 2nd-order cone or the ice cream cone. A norm cone is not only
convex but also a convex cone.

Polyhedron:

P={z| Az <b, Czx =d}

={x|a?x§bj,j:1,...,m, c]-Tac:dj,j:L...,p} (14)
A bounded polyhedron is called a polytope.

Simplex: Given a set of vectors vy, ... v, that are affine independent, a simplex is
C = conv{vy,...,vx} = {6ovo + ... 4+ Opvy | 6 = 0,170 = 0} (15)
A simplex is a polyhedron.

PSD cone: S = {X € 8" | X = 0} is a convex cone. (recall that 8" is the set of all real n x n
symmetric matrices.)

The empty set () is convex. A singleton {z,} is convex.



Convexity Preserving Operations

e Intersection:

S1,82 convex — 57N Sy convex (16)
S, convex for every a € A — ﬂ S, convex (17)
acA

e Affine mapping: If S C R" is convex and f : R™ — R™ is affine, then the image of S under f

f(8) ={f(z) | xS} (18)
is convex. Similarly, if C C R™ is convex and f : R®™ — R™ is affine, then the inverse image of C'
under f
F7HC) = A{z | f(x) € C} (19)
is convex.

e Image under perspective function: The perspective function P : R**! — R", with domain domP =
R™ x R4 is given by
P(z,t)=z/t (20)

If C C domP, then P(C) is convex.

Proper Cones and Generalized Inequalities
e A cone K C R" is proper if

— K is convex

— K is closed

— K is solid; i.e., int K # ()

— K is pointed; i.e., r € K,—r €e K =2 =0

e Generalized inequality associated with a proper cone K:
r3gxy<s=y—zckK (21)
T <Kg Y= y—xcintk (22)
e Properties of generalized inequalities

— 223Kk YU SR V=2 + UK Y+
— 2K Y, Y K 2= T 3K 2
-3y, a>0= ar g ay
—T2KYYIKT=Y==2
e Some examples:
— K =R". Then, x 2 y <= x; < y; for all 4.
— K =8". Then, X <k Y means that ¥ — X is PSD.

e Minimum and minimal elements: A point x € S is the minimum element of S if
yesS = =3k (23)

provided that such an z exists. The minimum element, if it exists, is unique. A point z € S is a
minimal element of S if
yeSyixr = y=u (24)



Dual Cones

e The dual cone of a cone K is
K*={y|y'z>0Vz e K} (25)

A cone K is called self-dual if K = K*.
e If K is proper then K* is also proper.
e Some examples: R’ and S’} are self-dual. The dual cone of a norm cone K* = {(x,t) | [|z| <t} is
K =A{(z,t) | =]l <t} (26)

where ||.||« is the dual norm of ||.||.



2 Convex Functions

Definition

e A function f: R™ — R is convex if domf is convex and for all z,y € domf, 0 <6 <1,
fOz+ (1 —0)y) <0f(x)+(1—-0)f(y) (27)
e A function f: R™ — R is strictly convex if domf is convex and for all z,y € domf, z # y, 0 <0 < 1,

fOx+ (1 =0)y) <0f(z)+(1-0)f(y) (28)

e A function f: R™ — R is concave if —f is convex.

Fundamental Properties

e f is convex if and only if it is convex when restricted to any line that intersects its domain; i.e., for all
z € domf and v,

g(t) = fz +tv) (29)

is convex over {t |  + tv € domf}.

e First order condition: Suppose that f is differentiable. A function f with a convex domain domf is
convex if and only if

f) = f@)+ Vi) (y—=) (30)

for all z,y € domf.

e Second order condition: Suppose that f is twice differentiable. A function f with a convex domain
domf is convex if and only if its Hessian

V2f(x) =0 (31)

for all x € domf. A function f with a convex domain domf is stricly convex if

V2f(x) =0 (32)
for all x € domf (the converse is not true).
e Sublevel sets: The sublevel set of f is
Co = {x € domf | f(z) < a} (33)

If f is convex, then C, is convex for every « (the converse is not true).
e Epigraph: The epigraph of f is
epif = {(z,?) | x € domf, f(x) < t} (34)

f is convex if and only if epif is convex.



Examples
e Examples on R:

— e is convex on R

— logx is concave on R 4

— zlogx is convex on R4 ¢

— log [* e~t'/2dt is concave on R

e Examples on R™:

A linear function aTx + b is convex and concave.

A quadratic function 27 Pz + 2¢Tz + r is convex if and only if P = 0, and is strictly convex if
P> 0.

— Every norm ||z|| is convex.

max{z1,...,z,} is convex.
. n i . n
— The geometric mean (J];_; z;)» is concave on R} , .
e Examples on R"*™

— tr(AX) is linear on R™*™, and hence is convex and concave.
— The negative logarithmetic determinant function —logdet X is convex on 8% .

— tr(X 1) is convex on 8%, .

Jensen Inequality

e For a convex f,
[0z +(1-0)y) <O0f(x) +(1-0)f(y) (35)
holds for any =,y € domf and 0 < 6 < 1.

e Extension: For a convex f,
f(Ez) <Ef(z) (36)

for any random variable z.

e Jensen inequality can be used to derive certain inequalities; e.g., the arithmetic-geometric mean in-
equality:

b
\/Egag L ab>0 (37)

and )

n n 1 n
<1_[1x> Sﬁz;% 2, >0,i=1,...,n (38)
1= 1=



Convexity Preserving Operations

e Nonnegative weighted sums:

m
fi,--y fmm convex,wy, ..., w, >0 = E w; f; convex

i=1

f(z,y) convex in x for each y € A, w(y) >0 foreachye A — / w(y) f(z,y)dy convex
A

Example: f(x) =3, ; z;logx; is convex on RY .

e Composition with an affine mapping:
g(x) = f(Az +b)

is convex if f is convex.
e Pointwise maximum and supremum:

fi, fa convex = g(z) = max{fi(), f2(x)} convex

f(z,y) convex in x for eachye A = g(z) = sup f(x,y) convex
yeA

Examples:
— A piecewise linear function f(z) = max;=1 1 aiTac + b; is convex.
— f(z) = sup,ec ||z — yl| is convex for any set C.
— The largest eigenvalue of X
J(X) = Amax (X)

= sup y"Xy= sup tr(Xyy")
lylla=1 lylla=1

is convex on S™.
— The 2-norm of X

F(X) = [1X1l2

= sup [ Xyll
lylla=1

is convex on R™*"™.
e Composition: Let f(z) = h(g(x)), where h : R — R, and g : R™ — R.. Let

s+ | h(z), x€domh
hiz) = { 00,  otherwise

Then,

f is convex if h is convex and nondecreasing, and g is convex.

f is convex if h is convex and nonincreasing, and g is concave.
e Minimization:

f(z,y) convex in (x,y),C convex nonempty — g(z)= ingf(:c,y) convex
ye

provided that g(x) > —oo for some z.

Examples:

(39)

(40)

(45)

(47)



— dist(x, S) = inf s ||z — y|| is convex for convex S.

— The Schur complement

A B
BT C©

}zo = (C=0,A-BC'B" =0 (48)
may be proven by the convex minimization property.
e Perspective: The perspective of a function f is a function ¢ : R"t! = R
g(x,t) =tf(z/t),  domg={(z,t)|x/t € domf,t>0} (49)

If f is convex then g is convex.

Quasiconvex Functions
e Definition:
— A function f: R™ — R is quasiconvex (or unimodal) if domf is convex and the sublevel set
S = {x € domf | f(x) < a} (50)

is convex for every .
— A function f is quasiconcave if — f is quasiconvex.

— A function f is quasilinear if f is quasiconvex and quasiconcave.
e Examples:
— logx is quasilinear on R 4.

— A linear fractional function

alz +0b T
f(x)—m, domf ={z|c z+d> 0} (51)

is quasilinear.

— rankX is quasiconcave on 87 (proven using the modified Jensen inequality).
e Modified Jensen inequality: f is quasiconvex if and only if for any xz,y € domf, and 0 < 0 < 1,

[0z + (1 —0)y) < max{f(z), f(y)} (52)

e First-order condition: Suppose that f is differentiable. f is quasiconvex if and only if domf is convex
and for all z,y € domf

fy) < fle) = V@) (y-2)<0 (53)
e Second-order condition: Suppose f is differentiable. If f is quasiconvex then for all z € domf, y € R"”,
y'Vf@) =0 = y'Vf(zx)y>0 (54)

Convexity with respect to Generalized Inequality
e Let K be a proper cone. A function f: R"™ — R™ is K-convex if for all z,y € domf and 0 <0 <1,
f0z + (1 —0)y) =k 0f(z) + (1 -0)f(y) (55)
e For K = R%, a K-convex function is a function for which each component function f; is convex.
e Consider K = 8.

— f(X) = XTX is K-convex on R"*™.
— f(X)=X"'is K-convex on S7 _ .



