ELEG5481: Signal Processing Optimization Techniques Summary: Convex Sets and Convex Functions

1 Convex Sets

Affine Sets

- A set $C \subseteq \mathbf{R}^{n}$ is said to be affine if

$$
\begin{equation*}
x_{1}, x_{2} \in C \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C, \forall \theta \in \mathbf{R} \tag{1}
\end{equation*}
$$

- A point

$$
\begin{equation*}
y=\sum_{i=1}^{k} \theta_{i} x_{i} \tag{2}
\end{equation*}
$$

where $\theta_{1}+\theta_{2}+\ldots+\theta_{k}=1$, is an affine combination of the points x_{1}, \ldots, x_{k}.

- An affine set can always be expressed as

$$
\begin{equation*}
C=V+x_{o} \tag{3}
\end{equation*}
$$

where $x_{o} \in C$, and V is a subspace.

- The affine hull of a set C (not necessarily affine) is

$$
\begin{equation*}
\operatorname{aff} C=\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{1}, \ldots, x_{k} \in C, \theta_{i} \in \mathbf{R}, i=1, \ldots, k, \theta_{1}+\ldots+\theta_{k}=1\right\} \tag{4}
\end{equation*}
$$

The affine hull is the smallest affine set that contains C.

Convex Sets

- A set $C \subseteq \mathbf{R}^{n}$ is said to be convex if

$$
\begin{equation*}
x_{1}, x_{2} \in C \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C, \forall \theta \in[0,1] \tag{5}
\end{equation*}
$$

- A point

$$
\begin{equation*}
y=\sum_{i=1}^{k} \theta_{i} x_{i} \tag{6}
\end{equation*}
$$

where $\theta_{1}, \ldots, \theta_{k} \geq 0, \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1$, is a convex combination of the points x_{1}, \ldots, x_{k}.

- The convex hull of a set C (not necessarily convex) is

$$
\begin{equation*}
\operatorname{conv} C=\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{1}, \ldots, x_{k} \in C, \theta_{i} \geq 0, i=1, \ldots, k, \theta_{1}+\ldots+\theta_{k}=1\right\} \tag{7}
\end{equation*}
$$

The convex hull is the smallest convex set that contains C.

Convex Cones

- A set $C \subseteq \mathbf{R}^{n}$ is said to be a convex cone if

$$
\begin{equation*}
x_{1}, x_{2} \in C \quad \Longrightarrow \quad \theta_{1} x_{1}+\theta_{2} x_{2} \in C, \forall \theta_{1}, \theta_{2} \geq 0 \tag{8}
\end{equation*}
$$

- A point

$$
\begin{equation*}
y=\sum_{i=1}^{k} \theta_{i} x_{i} \tag{9}
\end{equation*}
$$

where $\theta_{1}, \ldots, \theta_{k} \geq 0$, is a conic combination of the points x_{1}, \ldots, x_{k}.

- The conic hull of a set C (not necessarily convex) is

$$
\begin{equation*}
\operatorname{conic} C=\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{1}, \ldots, x_{k} \in C, \theta_{i} \geq 0, i=1, \ldots, k\right\} \tag{10}
\end{equation*}
$$

Some Examples of Convex Sets

- Hyperplane: $\left\{x \mid a^{T} x=b\right\}$.
- Halfspace: $\left\{x \mid a^{T} x \leq b\right\}$.
- Norm ball associated with norm $\|$.$\| :$

$$
\begin{equation*}
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\} \tag{11}
\end{equation*}
$$

where x_{c} is the center and r is the radius. When $\|$.$\| is the 2$-norm it is known as the Euclidean norm.

- Ellipsoid:

$$
\begin{equation*}
\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\} \tag{12}
\end{equation*}
$$

where $P \succ 0$.

- Norm cone associated with $\|$.$\| :$

$$
\begin{equation*}
K=\{(x, t) \mid\|x\| \leq t\} \tag{13}
\end{equation*}
$$

When $\|$.$\| is the 2$-norm K is called the 2 nd-order cone or the ice cream cone. A norm cone is not only convex but also a convex cone.

- Polyhedron:

$$
\begin{align*}
\mathcal{P} & =\{x \mid A x \preceq b, C x=d\} \\
& =\left\{x \mid a_{j}^{T} x \leq b_{j}, j=1, \ldots, m, c_{j}^{T} x=d_{j}, j=1, \ldots, p\right\} \tag{14}
\end{align*}
$$

A bounded polyhedron is called a polytope.

- Simplex: Given a set of vectors $v_{0}, \ldots v_{k}$ that are affine independent, a simplex is

$$
\begin{equation*}
C=\boldsymbol{\operatorname { c o n v }}\left\{v_{0}, \ldots, v_{k}\right\}=\left\{\theta_{0} v_{0}+\ldots+\theta_{k} v_{k} \mid \theta \succeq 0, \mathbf{1}^{T} \theta=0\right\} \tag{15}
\end{equation*}
$$

A simplex is a polyhedron.

- PSD cone: $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$ is a convex cone. (recall that \mathbf{S}^{n} is the set of all real $n \times n$ symmetric matrices.)
- The empty set \emptyset is convex. A singleton $\left\{x_{o}\right\}$ is convex.

Convexity Preserving Operations

- Intersection:

$$
\begin{array}{cc}
S_{1}, S_{2} \text { convex } \quad \Longrightarrow \quad S_{1} \cap S_{2} \text { convex } \\
S_{\alpha} \text { convex for every } \alpha \in \mathcal{A} & \Longrightarrow \bigcap_{\alpha \in \mathcal{A}} S_{\alpha} \text { convex } \tag{17}
\end{array}
$$

- Affine mapping: If $S \subseteq \mathbf{R}^{n}$ is convex and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine, then the image of S under f

$$
\begin{equation*}
f(S)=\{f(x) \mid x \in S\} \tag{18}
\end{equation*}
$$

is convex. Similarly, if $C \subseteq \mathbf{R}^{m}$ is convex and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine, then the inverse image of C under f

$$
\begin{equation*}
f^{-1}(C)=\{x \mid f(x) \in C\} \tag{19}
\end{equation*}
$$

is convex.

- Image under perspective function: The perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$, with domain $\operatorname{dom} P=$ $\mathbf{R}^{n} \times \mathbf{R}_{++}$is given by

$$
\begin{equation*}
P(z, t)=z / t \tag{20}
\end{equation*}
$$

If $C \subseteq \operatorname{dom} P$, then $P(C)$ is convex.

Proper Cones and Generalized Inequalities

- A cone $K \subseteq \mathbf{R}^{n}$ is proper if
- K is convex
- K is closed
$-K$ is solid; i.e., $\operatorname{int} K \neq \emptyset$
$-K$ is pointed; i.e., $x \in K,-x \in K \Longrightarrow x=0$
- Generalized inequality associated with a proper cone K :

$$
\begin{align*}
& x \preceq_{K} y \Longleftrightarrow y-x \in K \tag{21}\\
& x \prec_{K} y \Longleftrightarrow y-x \in \operatorname{int} K \tag{22}
\end{align*}
$$

- Properties of generalized inequalities
$-x \preceq_{K} y, u \preceq_{K} v \Longrightarrow x+u \preceq_{K} y+v$
$-x \preceq_{K} y, y \preceq_{K} z \Longrightarrow x \preceq_{K} z$
$-x \preceq_{K} y, \alpha \geq 0 \Longrightarrow \alpha x \preceq_{K} \alpha y$
$-x \preceq_{K} y, y \preceq_{K} x \Longrightarrow y=x$
- Some examples:
$-K=\mathbf{R}_{+}^{n}$. Then, $x \preceq_{K} y \Longleftrightarrow x_{i} \leq y_{i}$ for all i.
$-K=\mathbf{S}_{+}^{n}$. Then, $X \preceq_{K} Y$ means that $Y-X$ is PSD.
- Minimum and minimal elements: A point $x \in S$ is the minimum element of S if

$$
\begin{equation*}
y \in S \quad \Longrightarrow \quad x \preceq_{K} y \tag{23}
\end{equation*}
$$

provided that such an x exists. The minimum element, if it exists, is unique. A point $x \in S$ is a minimal element of S if

$$
\begin{equation*}
y \in S, y \preceq_{K} x \quad \Longrightarrow \quad y=x \tag{24}
\end{equation*}
$$

Dual Cones

- The dual cone of a cone K is

$$
\begin{equation*}
K^{*}=\left\{y \mid y^{T} x \geq 0 \forall x \in K\right\} \tag{25}
\end{equation*}
$$

A cone K is called self-dual if $K=K^{*}$.

- If K is proper then K^{*} is also proper.
- Some examples: \mathbf{R}_{+}^{n} and \mathbf{S}_{+}^{n} are self-dual. The dual cone of a norm cone $K^{*}=\{(x, t) \mid\|x\| \leq t\}$ is

$$
\begin{equation*}
K^{*}=\left\{(x, t) \mid\|x\|_{*} \leq t\right\} \tag{26}
\end{equation*}
$$

where $\|.\|_{*}$ is the dual norm of $\|$.$\| .$

2 Convex Functions

Definition

- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$,

$$
\begin{equation*}
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \tag{27}
\end{equation*}
$$

- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is strictly convex if $\operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$,

$$
\begin{equation*}
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y) \tag{28}
\end{equation*}
$$

- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is concave if $-f$ is convex.

Fundamental Properties

- f is convex if and only if it is convex when restricted to any line that intersects its domain; i.e., for all $x \in \operatorname{dom} f$ and ν,

$$
\begin{equation*}
g(t)=f(x+t \nu) \tag{29}
\end{equation*}
$$

is convex over $\{t \mid x+t \nu \in \operatorname{dom} f\}$.

- First order condition: Suppose that f is differentiable. A function f with a convex domain $\operatorname{dom} f$ is convex if and only if

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \tag{30}
\end{equation*}
$$

for all $x, y \in \operatorname{dom} f$.

- Second order condition: Suppose that f is twice differentiable. A function f with a convex domain $\operatorname{dom} f$ is convex if and only if its Hessian

$$
\begin{equation*}
\nabla^{2} f(x) \succeq 0 \tag{31}
\end{equation*}
$$

for all $x \in \operatorname{dom} f$. A function f with a convex domain $\operatorname{dom} f$ is stricly convex if

$$
\begin{equation*}
\nabla^{2} f(x) \succ 0 \tag{32}
\end{equation*}
$$

for all $x \in \operatorname{dom} f$ (the converse is not true).

- Sublevel sets: The sublevel set of f is

$$
\begin{equation*}
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\} \tag{33}
\end{equation*}
$$

If f is convex, then C_{α} is convex for every α (the converse is not true).

- Epigraph: The epigraph of f is

$$
\begin{equation*}
\mathbf{e p i} f=\{(x, t) \mid x \in \operatorname{dom} f, f(x) \leq t\} \tag{34}
\end{equation*}
$$

f is convex if and only if epi f is convex.

Examples

- Examples on R:
$-e^{a x}$ is convex on \mathbf{R}
$-\log x$ is concave on \mathbf{R}_{++}
$-x \log x$ is convex on \mathbf{R}_{++}
$-\log \int_{-\infty}^{x} e^{-t^{2} / 2} d t$ is concave on \mathbf{R}
- Examples on \mathbf{R}^{n} :
- A linear function $a^{T} x+b$ is convex and concave.
- A quadratic function $x^{T} P x+2 q^{T} x+r$ is convex if and only if $P \succeq 0$, and is strictly convex if $P \succ 0$.
- Every norm $\|x\|$ is convex.
$-\max \left\{x_{1}, \ldots, x_{n}\right\}$ is convex.
- The geometric mean $\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}$ is concave on \mathbf{R}_{++}^{n}.
- Examples on $\mathbf{R}^{n \times m}$
$-\operatorname{tr}(A X)$ is linear on $\mathbf{R}^{n \times m}$, and hence is convex and concave.
- The negative logarithmetic determinant function $-\log \operatorname{det} X$ is convex on \mathbf{S}_{++}^{n}.
$-\operatorname{tr}\left(X^{-1}\right)$ is convex on \mathbf{S}_{++}^{n}.

Jensen Inequality

- For a convex f,

$$
\begin{equation*}
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \tag{35}
\end{equation*}
$$

holds for any $x, y \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$.

- Extension: For a convex f,

$$
\begin{equation*}
f(\mathbf{E} z) \leq \mathbf{E} f(z) \tag{36}
\end{equation*}
$$

for any random variable z.

- Jensen inequality can be used to derive certain inequalities; e.g., the arithmetic-geometric mean inequality:

$$
\begin{equation*}
\sqrt{a b} \leq \frac{a+b}{2}, \quad a, b \geq 0 \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad x_{i} \geq 0, i=1, \ldots, n \tag{38}
\end{equation*}
$$

Convexity Preserving Operations

- Nonnegative weighted sums:

$$
\begin{equation*}
f_{1}, \ldots, f_{m} \text { convex, } w_{1}, \ldots, w_{m} \geq 0 \quad \Longrightarrow \quad \sum_{i=1}^{m} w_{i} f_{i} \text { convex } \tag{39}
\end{equation*}
$$

$f(x, y)$ convex in x for each $y \in \mathcal{A}, w(y) \geq 0$ for each $y \in \mathcal{A} \quad \Longrightarrow \quad \int_{\mathcal{A}} w(y) f(x, y) d y$ convex
Example: $f(x)=\sum_{i=1} x_{i} \log x_{i}$ is convex on \mathbf{R}_{++}^{n}.

- Composition with an affine mapping:

$$
\begin{equation*}
g(x)=f(A x+b) \tag{41}
\end{equation*}
$$

is convex if f is convex.

- Pointwise maximum and supremum:

$$
\begin{align*}
f_{1}, f_{2} \text { convex } & \Longrightarrow g(x)=\max \left\{f_{1}(x), f_{2}(x)\right\} \text { convex } \tag{42}\\
f(x, y) \text { convex in } x \text { for each } y \in \mathcal{A} & \Longrightarrow g(x)=\sup _{y \in \mathcal{A}} f(x, y) \text { convex } \tag{43}
\end{align*}
$$

Examples:

- A piecewise linear function $f(x)=\max _{i=1, \ldots, L} a_{i}^{T} x+b_{i}$ is convex.
$-f(x)=\sup _{y \in C}\|x-y\|$ is convex for any set C.
- The largest eigenvalue of X

$$
\begin{align*}
f(X) & =\lambda_{\max }(X) \\
& =\sup _{\|y\|_{2}=1} y^{T} X y=\sup _{\|y\|_{2}=1} \operatorname{tr}\left(X y y^{T}\right) \tag{44}
\end{align*}
$$

is convex on \mathbf{S}^{n}.

- The 2-norm of X

$$
\begin{align*}
f(X) & =\|X\|_{2} \\
& =\sup _{\|y\|_{2}=1}\|X y\|_{2} \tag{45}
\end{align*}
$$

is convex on $\mathbf{R}^{n \times m}$.

- Composition: Let $f(x)=h(g(x))$, where $h: \mathbf{R} \rightarrow \mathbf{R}$, and $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$. Let

$$
\tilde{h}(x)=\left\{\begin{array}{cc}
h(x), & x \in \operatorname{dom} h \tag{46}\\
\infty, & \text { otherwise }
\end{array}\right.
$$

Then,
f is convex if \tilde{h} is convex and nondecreasing, and g is convex.
f is convex if \tilde{h} is convex and nonincreasing, and g is concave.

- Minimization:

$$
\begin{equation*}
f(x, y) \text { convex in }(x, y), C \text { convex nonempty } \quad \Longrightarrow g(x)=\inf _{y \in C} f(x, y) \text { convex } \tag{47}
\end{equation*}
$$

provided that $g(x)>-\infty$ for some x.
Examples:
$-\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex for convex S.

- The Schur complement

$$
\left[\begin{array}{cc}
A & B \tag{48}\\
B^{T} & C
\end{array}\right] \succeq 0 \quad \Longleftrightarrow \quad C \succeq 0, A-B C^{\dagger} B^{T} \succeq 0
$$

may be proven by the convex minimization property.

- Perspective: The perspective of a function f is a function $g: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$

$$
\begin{equation*}
g(x, t)=t f(x / t), \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\} \tag{49}
\end{equation*}
$$

If f is convex then g is convex.

Quasiconvex Functions

- Definition:
- A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex (or unimodal) if $\operatorname{dom} f$ is convex and the sublevel set

$$
\begin{equation*}
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\} \tag{50}
\end{equation*}
$$

is convex for every α.

- A function f is quasiconcave if $-f$ is quasiconvex.
- A function f is quasilinear if f is quasiconvex and quasiconcave.
- Examples:
$-\log x$ is quasilinear on \mathbf{R}_{++}.
- A linear fractional function

$$
\begin{equation*}
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\} \tag{51}
\end{equation*}
$$

is quasilinear.
$-\operatorname{rank} X$ is quasiconcave on \mathbf{S}_{+}^{n} (proven using the modified Jensen inequality).

- Modified Jensen inequality: f is quasiconvex if and only if for any $x, y \in \operatorname{dom} f$, and $0 \leq \theta \leq 1$,

$$
\begin{equation*}
f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\} \tag{52}
\end{equation*}
$$

- First-order condition: Suppose that f is differentiable. f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} f$

$$
\begin{equation*}
f(y) \leq f(x) \quad \Longrightarrow \quad \nabla f(x)^{T}(y-x) \leq 0 \tag{53}
\end{equation*}
$$

- Second-order condition: Suppose f is differentiable. If f is quasiconvex then for all $x \in \operatorname{dom} f, y \in \mathbf{R}^{n}$,

$$
\begin{equation*}
y^{T} \nabla f(x)=0 \quad \Longrightarrow \quad y^{T} \nabla^{2} f(x) y \geq 0 \tag{54}
\end{equation*}
$$

Convexity with respect to Generalized Inequality

- Let K be a proper cone. A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is K-convex if for all $x, y \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$,

$$
\begin{equation*}
f(\theta x+(1-\theta) y) \preceq_{K} \theta f(x)+(1-\theta) f(y) \tag{55}
\end{equation*}
$$

- For $K=\mathbf{R}_{+}^{n}$, a K-convex function is a function for which each component function f_{i} is convex.
- Consider $K=\mathbf{S}_{+}^{n}$.
$-f(X)=X^{T} X$ is K-convex on $\mathbf{R}^{n \times m}$.
$-f(X)=X^{-1}$ is K-convex on \mathbf{S}_{++}^{n}.

