ELEG5481: Signal Processing Optimization Techniques Summary: Convex Sets and Convex Functions

1 Convex Sets

Affine Sets

• A set $C \subseteq \mathbf{R}^n$ is said to be affine if

$$x_1, x_2 \in C \implies \theta x_1 + (1 - \theta) x_2 \in C, \forall \theta \in \mathbf{R}$$
 (1)

• A point

$$y = \sum_{i=1}^{k} \theta_i x_i,\tag{2}$$

where $\theta_1 + \theta_2 + \ldots + \theta_k = 1$, is an affine combination of the points x_1, \ldots, x_k .

• An affine set can always be expressed as

$$C = V + x_o \tag{3}$$

where $x_o \in C$, and V is a subspace.

• The affine hull of a set C (not necessarily affine) is

aff
$$C = \{\theta_1 x_1 + \ldots + \theta_k x_k \mid x_1, \ldots, x_k \in C, \ \theta_i \in \mathbf{R}, i = 1, \ldots, k, \ \theta_1 + \ldots + \theta_k = 1\}$$
 (4)

The affine hull is the smallest affine set that contains C.

Convex Sets

• A set $C \subseteq \mathbf{R}^n$ is said to be convex if

$$x_1, x_2 \in C \implies \theta x_1 + (1 - \theta) x_2 \in C, \forall \theta \in [0, 1]$$
(5)

• A point

$$y = \sum_{i=1}^{k} \theta_i x_i,\tag{6}$$

where $\theta_1, \ldots, \theta_k \ge 0, \ \theta_1 + \theta_2 + \ldots + \theta_k = 1$, is a convex combination of the points x_1, \ldots, x_k .

• The convex hull of a set C (not necessarily convex) is

$$\mathbf{conv}C = \{\theta_1 x_1 + \ldots + \theta_k x_k \mid x_1, \ldots, x_k \in C, \theta_i \ge 0, i = 1, \ldots, k, \theta_1 + \ldots + \theta_k = 1\}$$
(7)

The convex hull is the smallest convex set that contains C.

Convex Cones

• A set $C \subseteq \mathbf{R}^n$ is said to be a convex cone if

$$x_1, x_2 \in C \implies \theta_1 x_1 + \theta_2 x_2 \in C, \forall \theta_1, \theta_2 \ge 0$$
(8)

• A point

$$y = \sum_{i=1}^{k} \theta_i x_i,\tag{9}$$

where $\theta_1, \ldots, \theta_k \ge 0$, is a conic combination of the points x_1, \ldots, x_k .

• The conic hull of a set C (not necessarily convex) is

$$\operatorname{conic} C = \{\theta_1 x_1 + \ldots + \theta_k x_k \mid x_1, \ldots, x_k \in C, \theta_i \ge 0, i = 1, \ldots, k\}$$
(10)

Some Examples of Convex Sets

- Hyperplane: $\{x \mid a^T x = b\}.$
- Halfspace: $\{x \mid a^T x \leq b\}.$
- Norm ball associated with norm ||.||:

$$B(x_c, r) = \{x \mid ||x - x_c|| \le r\}$$
(11)

where x_c is the center and r is the radius. When $\|.\|$ is the 2-norm it is known as the Euclidean norm.

• Ellipsoid:

$$\mathcal{E} = \{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \}$$
(12)

where $P \succ 0$.

• Norm cone associated with $\|.\|$:

$$K = \{ (x,t) \mid ||x|| \le t \}$$
(13)

When $\|.\|$ is the 2-norm K is called the 2nd-order cone or the ice cream cone. A norm cone is not only convex but also a convex cone.

• Polyhedron:

$$\mathcal{P} = \{x \mid Ax \leq b, \ Cx = d\} = \{x \mid a_j^T x \leq b_j, j = 1, \dots, m, \ c_j^T x = d_j, j = 1, \dots, p\}$$
(14)

A bounded polyhedron is called a polytope.

• Simplex: Given a set of vectors $v_0, \ldots v_k$ that are affine independent, a simplex is

$$C = \mathbf{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \mathbf{1}^T \theta = 0\}$$
(15)

A simplex is a polyhedron.

- PSD cone: $\mathbf{S}^n_+ = \{X \in \mathbf{S}^n \mid X \succeq 0\}$ is a convex cone. (recall that \mathbf{S}^n is the set of all real $n \times n$ symmetric matrices.)
- The empty set \emptyset is convex. A singleton $\{x_o\}$ is convex.

Convexity Preserving Operations

• Intersection:

 $S_1, S_2 \text{ convex} \implies S_1 \cap S_2 \text{ convex}$ (16)

 S_{α} convex for every $\alpha \in \mathcal{A} \implies \bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ convex (17)

• Affine mapping: If $S \subseteq \mathbf{R}^n$ is convex and $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine, then the image of S under f

$$f(S) = \{f(x) \mid x \in S\}$$

$$(18)$$

is convex. Similarly, if $C \subseteq \mathbf{R}^m$ is convex and $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine, then the inverse image of C under f

$$f^{-1}(C) = \{x \mid f(x) \in C\}$$
(19)

is convex.

• Image under perspective function: The perspective function $P : \mathbf{R}^{n+1} \to \mathbf{R}^n$, with domain $\mathbf{dom}P = \mathbf{R}^n \times \mathbf{R}_{++}$ is given by

$$P(z,t) = z/t \tag{20}$$

If $C \subseteq \operatorname{dom} P$, then P(C) is convex.

Proper Cones and Generalized Inequalities

- A cone $K \subseteq \mathbf{R}^n$ is proper if
 - -K is convex
 - K is closed
 - K is solid; i.e., $\operatorname{int} K \neq \emptyset$
 - K is pointed; i.e., $x \in K, -x \in K \Longrightarrow x = 0$
- Generalized inequality associated with a proper cone K:

$$x \preceq_K y \Longleftrightarrow y - x \in K \tag{21}$$

$$x \prec_K y \Longleftrightarrow y - x \in \mathbf{int}K \tag{22}$$

- Properties of generalized inequalities
 - $-x \preceq_K y, u \preceq_K v \Longrightarrow x + u \preceq_K y + v$

$$-x \preceq_K y, y \preceq_K z \Longrightarrow x \preceq_K z$$

- $-x \preceq_K y, \alpha \ge 0 \Longrightarrow \alpha x \preceq_K \alpha y$
- $-x \preceq_K y, y \preceq_K x \Longrightarrow y = x$
- Some examples:
 - $-K = \mathbf{R}^n_+$. Then, $x \preceq_K y \iff x_i \leq y_i$ for all *i*.
 - $-K = \mathbf{S}_{+}^{n}$. Then, $X \preceq_{K} Y$ means that Y X is PSD.
- Minimum and minimal elements: A point $x \in S$ is the minimum element of S if

$$y \in S \implies x \preceq_K y \tag{23}$$

provided that such an x exists. The minimum element, if it exists, is unique. A point $x \in S$ is a minimal element of S if

$$y \in S, y \preceq_K x \implies y = x \tag{24}$$

Dual Cones

• The dual cone of a cone K is

$$K^* = \{ y \mid y^T x \ge 0 \ \forall x \in K \}$$

$$\tag{25}$$

A cone K is called self-dual if $K = K^*$.

- If K is proper then K^* is also proper.
- Some examples: \mathbf{R}^n_+ and \mathbf{S}^n_+ are self-dual. The dual cone of a norm cone $K^* = \{(x,t) \mid ||x|| \le t\}$ is

$$K^* = \{ (x,t) \mid ||x||_* \le t \}$$
(26)

where $\|.\|_*$ is the dual norm of $\|.\|$.

2 Convex Functions

Definition

• A function $f : \mathbf{R}^n \to \mathbf{R}$ is convex if $\mathbf{dom} f$ is convex and for all $x, y \in \mathbf{dom} f, 0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
(27)

• A function $f : \mathbf{R}^n \to \mathbf{R}$ is strictly convex if **dom** f is convex and for all $x, y \in \mathbf{dom} f, x \neq y, 0 < \theta < 1$,

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$
(28)

• A function $f : \mathbf{R}^n \to \mathbf{R}$ is concave if -f is convex.

Fundamental Properties

• f is convex if and only if it is convex when restricted to any line that intersects its domain; i.e., for all $x \in \mathbf{dom} f$ and ν ,

$$g(t) = f(x + t\nu) \tag{29}$$

is convex over $\{t \mid x + t\nu \in \mathbf{dom}f\}$.

• First order condition: Suppose that f is differentiable. A function f with a convex domain $\mathbf{dom} f$ is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \tag{30}$$

for all $x, y \in \mathbf{dom} f$.

• Second order condition: Suppose that f is twice differentiable. A function f with a convex domain $\mathbf{dom} f$ is convex if and only if its Hessian

$$\nabla^2 f(x) \succeq 0 \tag{31}$$

for all $x \in \mathbf{dom} f$. A function f with a convex domain $\mathbf{dom} f$ is stricly convex if

$$\nabla^2 f(x) \succ 0 \tag{32}$$

for all $x \in \mathbf{dom} f$ (the converse is not true).

• Sublevel sets: The sublevel set of f is

$$C_{\alpha} = \{ x \in \mathbf{dom} f \mid f(x) \le \alpha \}$$
(33)

If f is convex, then C_{α} is convex for every α (the converse is not true).

• Epigraph: The epigraph of f is

$$\mathbf{epi}f = \{(x,t) \mid x \in \mathbf{dom}f, f(x) \le t\}$$
(34)

f is convex if and only if epif is convex.

Examples

- Examples on \mathbf{R} :
 - $-e^{ax}$ is convex on **R**
 - $-\log x$ is concave on \mathbf{R}_{++}
 - $-x\log x$ is convex on \mathbf{R}_{++}
 - $-\log \int_{-\infty}^{x} e^{-t^2/2} dt$ is concave on **R**
- Examples on \mathbf{R}^n :
 - A linear function $a^T x + b$ is convex and concave.
 - A quadratic function $x^T P x + 2q^T x + r$ is convex if and only if $P \succeq 0$, and is strictly convex if $P \succ 0$.
 - Every norm ||x|| is convex.
 - $-\max\{x_1,\ldots,x_n\}$ is convex.
 - The geometric mean $(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$ is concave on \mathbf{R}_{++}^{n} .
- Examples on $\mathbf{R}^{n \times m}$
 - $-\operatorname{tr}(AX)$ is linear on $\mathbb{R}^{n \times m}$, and hence is convex and concave.
 - The negative logarithmetic determinant function $-\log \det X$ is convex on \mathbf{S}_{++}^n .
 - $-\operatorname{tr}(X^{-1})$ is convex on \mathbf{S}_{++}^n .

Jensen Inequality

• For a convex f,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
(35)

holds for any $x, y \in \mathbf{dom} f$ and $0 \le \theta \le 1$.

• Extension: For a convex f,

$$f(\mathbf{E}z) \le \mathbf{E}f(z) \tag{36}$$

for any random variable z.

• Jensen inequality can be used to derive certain inequalities; e.g., the arithmetic-geometric mean inequality:

$$\sqrt{ab} \le \frac{a+b}{2}, \qquad a, b \ge 0 \tag{37}$$

and

$$\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}, \qquad x_{i} \geq 0, i = 1, \dots, n$$
(38)

Convexity Preserving Operations

• Nonnegative weighted sums:

$$f_1, \dots, f_m \text{ convex}, w_1, \dots, w_m \ge 0 \implies \sum_{i=1}^m w_i f_i \text{ convex}$$
 (39)

f(x,y) convex in x for each $y \in \mathcal{A}, w(y) \ge 0$ for each $y \in \mathcal{A} \implies \int_{\mathcal{A}} w(y) f(x,y) dy$ convex (40)

Example: $f(x) = \sum_{i=1} x_i \log x_i$ is convex on \mathbf{R}_{++}^n .

• Composition with an affine mapping:

$$g(x) = f(Ax + b) \tag{41}$$

is convex if f is convex.

• Pointwise maximum and supremum:

$$f_1, f_2 \text{ convex} \implies g(x) = \max\{f_1(x), f_2(x)\} \text{ convex}$$
(42)
$$f(x, y) \text{ convex in } x \text{ for each } y \in \mathcal{A} \implies g(x) = \sup_{y \in \mathcal{A}} f(x, y) \text{ convex}$$
(43)

Examples:

- A piecewise linear function $f(x) = \max_{i=1,\dots,L} a_i^T x + b_i$ is convex.
- $f(x) = \sup_{y \in C} ||x y||$ is convex for any set C.
- The largest eigenvalue of X

$$f(X) = \lambda_{\max}(X) = \sup_{\|y\|_{2}=1} y^{T} X y = \sup_{\|y\|_{2}=1} \operatorname{tr}(X y y^{T})$$
(44)

is convex on \mathbf{S}^n .

– The 2-norm of X

$$f(X) = \|X\|_{2}$$

=
$$\sup_{\|y\|_{2}=1} \|Xy\|_{2}$$
 (45)

is convex on $\mathbf{R}^{n \times m}$.

• Composition: Let f(x) = h(g(x)), where $h : \mathbf{R} \to \mathbf{R}$, and $g : \mathbf{R}^n \to \mathbf{R}$. Let

$$\tilde{h}(x) = \begin{cases} h(x), & x \in \mathbf{dom}h\\ \infty, & \text{otherwise} \end{cases}$$
(46)

Then,

f is convex if \tilde{h} is convex and nondecreasing, and g is convex.

f is convex if \tilde{h} is convex and nonincreasing, and g is concave.

• Minimization:

$$f(x,y)$$
 convex in $(x,y), C$ convex nonempty $\implies g(x) = \inf_{y \in C} f(x,y)$ convex (47)

provided that $g(x) > -\infty$ for some x. Examples:

- $-\operatorname{dist}(x,S) = \inf_{y \in S} \|x y\| \text{ is convex for convex } S.$
- The Schur complement

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0 \quad \Longleftrightarrow \quad C \succeq 0, A - BC^{\dagger}B^T \succeq 0$$
⁽⁴⁸⁾

may be proven by the convex minimization property.

• Perspective: The perspective of a function f is a function $g: \mathbf{R}^{n+1} \to \mathbf{R}$

$$g(x,t) = tf(x/t), \quad \mathbf{dom}g = \{(x,t) \mid x/t \in \mathbf{dom}f, t > 0\}$$
(49)

If f is convex then g is convex.

Quasiconvex Functions

- Definition:
 - A function $f: \mathbf{R}^n \to \mathbf{R}$ is quasiconvex (or unimodal) if $\mathbf{dom} f$ is convex and the sublevel set

$$S_{\alpha} = \{ x \in \mathbf{dom} f \mid f(x) \le \alpha \}$$

$$(50)$$

is convex for every α .

- A function f is quasiconcave if -f is quasiconvex.
- A function f is quasilinear if f is quasiconvex and quasiconcave.
- Examples:
 - $-\log x$ is quasilinear on \mathbf{R}_{++} .
 - A linear fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \qquad \mathbf{dom} f = \{x \mid c^T x + d > 0\}$$
(51)

is quasilinear.

- rank X is quasiconcave on \mathbf{S}^{n}_{+} (proven using the modified Jensen inequality).
- Modified Jensen inequality: f is quasiconvex if and only if for any $x, y \in \mathbf{dom} f$, and $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\tag{52}$$

• First-order condition: Suppose that f is differentiable. f is quasiconvex if and only if **dom** f is convex and for all $x, y \in$ **dom** f

$$f(y) \le f(x) \implies \nabla f(x)^T (y-x) \le 0$$
 (53)

• Second-order condition: Suppose f is differentiable. If f is quasiconvex then for all $x \in \mathbf{dom} f, y \in \mathbf{R}^n$,

$$y^T \nabla f(x) = 0 \implies y^T \nabla^2 f(x) y \ge 0$$
 (54)

Convexity with respect to Generalized Inequality

• Let K be a proper cone. A function $f: \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if for all $x, y \in \mathbf{dom} f$ and $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \preceq_{K} \theta f(x) + (1 - \theta)f(y)$$
(55)

- For $K = \mathbf{R}_{+}^{n}$, a K-convex function is a function for which each component function f_{i} is convex.
- Consider $K = \mathbf{S}_{+}^{n}$.
 - $f(X) = X^T X \text{ is } K \text{-convex on } \mathbf{R}^{n \times m}.$ - $f(X) = X^{-1} \text{ is } K \text{-convex on } \mathbf{S}^n_{++}.$