
ELEG5481: Signal Processing Optimization Techniques

Summary: Convex Sets and Convex Functions

1 Convex Sets

Affine Sets

• A set C ⊆ Rn is said to be affine if

x1, x2 ∈ C =⇒ θx1 + (1 − θ)x2 ∈ C, ∀θ ∈ R (1)

• A point

y =

k
∑

i=1

θixi, (2)

where θ1 + θ2 + . . .+ θk = 1, is an affine combination of the points x1, . . . , xk.

• An affine set can always be expressed as
C = V + xo (3)

where xo ∈ C, and V is a subspace.

• The affine hull of a set C (not necessarily affine) is

affC = {θ1x1 + . . .+ θkxk | x1, . . . , xk ∈ C, θi ∈ R, i = 1, . . . , k, θ1 + . . .+ θk = 1} (4)

The affine hull is the smallest affine set that contains C.

Convex Sets

• A set C ⊆ Rn is said to be convex if

x1, x2 ∈ C =⇒ θx1 + (1− θ)x2 ∈ C, ∀θ ∈ [0, 1] (5)

• A point

y =

k
∑

i=1

θixi, (6)

where θ1, . . . , θk ≥ 0, θ1 + θ2 + . . .+ θk = 1, is a convex combination of the points x1, . . . , xk.

• The convex hull of a set C (not necessarily convex) is

convC = {θ1x1 + . . .+ θkxk | x1, . . . , xk ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + . . .+ θk = 1} (7)

The convex hull is the smallest convex set that contains C.

Convex Cones

• A set C ⊆ Rn is said to be a convex cone if

x1, x2 ∈ C =⇒ θ1x1 + θ2x2 ∈ C, ∀θ1, θ2 ≥ 0 (8)
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• A point

y =

k
∑

i=1

θixi, (9)

where θ1, . . . , θk ≥ 0, is a conic combination of the points x1, . . . , xk.

• The conic hull of a set C (not necessarily convex) is

conicC = {θ1x1 + . . .+ θkxk | x1, . . . , xk ∈ C, θi ≥ 0, i = 1, . . . , k} (10)

Some Examples of Convex Sets

• Hyperplane: {x | aTx = b}.

• Halfspace: {x | aTx ≤ b}.

• Norm ball associated with norm ‖.‖:

B(xc, r) = {x | ‖x− xc‖ ≤ r} (11)

where xc is the center and r is the radius. When ‖.‖ is the 2-norm it is known as the Euclidean norm.

• Ellipsoid:
E = {x | (x− xc)

TP−1(x− xc) ≤ 1} (12)

where P ≻ 0.

• Norm cone associated with ‖.‖:
K = {(x, t) | ‖x‖ ≤ t} (13)

When ‖.‖ is the 2-norm K is called the 2nd-order cone or the ice cream cone. A norm cone is not only
convex but also a convex cone.

• Polyhedron:

P = {x | Ax � b, Cx = d}
= {x | aTj x ≤ bj, j = 1, . . . ,m, cTj x = dj , j = 1, . . . , p} (14)

A bounded polyhedron is called a polytope.

• Simplex: Given a set of vectors v0, . . . vk that are affine independent, a simplex is

C = conv{v0, . . . , vk} = {θ0v0 + . . .+ θkvk | θ � 0,1T θ = 0} (15)

A simplex is a polyhedron.

• PSD cone: Sn
+ = {X ∈ Sn | X � 0} is a convex cone. (recall that Sn is the set of all real n × n

symmetric matrices.)

• The empty set ∅ is convex. A singleton {xo} is convex.
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Convexity Preserving Operations

• Intersection:
S1, S2 convex =⇒ S1 ∩ S2 convex (16)

Sα convex for every α ∈ A =⇒
⋂

α∈A

Sα convex (17)

• Affine mapping: If S ⊆ Rn is convex and f : Rn → Rm is affine, then the image of S under f

f(S) = {f(x) | x ∈ S} (18)

is convex. Similarly, if C ⊆ Rm is convex and f : Rn → Rm is affine, then the inverse image of C
under f

f−1(C) = {x | f(x) ∈ C} (19)

is convex.

• Image under perspective function: The perspective function P : Rn+1 → Rn, with domain domP =
Rn ×R++ is given by

P (z, t) = z/t (20)

If C ⊆ domP , then P (C) is convex.

Proper Cones and Generalized Inequalities

• A cone K ⊆ Rn is proper if

– K is convex

– K is closed

– K is solid; i.e., intK 6= ∅
– K is pointed; i.e., x ∈ K,−x ∈ K =⇒ x = 0

• Generalized inequality associated with a proper cone K:

x �K y ⇐⇒ y − x ∈ K (21)

x ≺K y ⇐⇒ y − x ∈ intK (22)

• Properties of generalized inequalities

– x �K y, u �K v =⇒ x+ u �K y + v

– x �K y, y �K z =⇒ x �K z

– x �K y, α ≥ 0 =⇒ αx �K αy

– x �K y, y �K x =⇒ y = x

• Some examples:

– K = Rn
+. Then, x �K y ⇐⇒ xi ≤ yi for all i.

– K = Sn
+. Then, X �K Y means that Y −X is PSD.

• Minimum and minimal elements: A point x ∈ S is the minimum element of S if

y ∈ S =⇒ x �K y (23)

provided that such an x exists. The minimum element, if it exists, is unique. A point x ∈ S is a
minimal element of S if

y ∈ S, y �K x =⇒ y = x (24)
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Dual Cones

• The dual cone of a cone K is
K∗ = {y | yTx ≥ 0 ∀x ∈ K} (25)

A cone K is called self-dual if K = K∗.

• If K is proper then K∗ is also proper.

• Some examples: Rn
+ and Sn

+ are self-dual. The dual cone of a norm cone K∗ = {(x, t) | ‖x‖ ≤ t} is

K∗ = {(x, t) | ‖x‖∗ ≤ t} (26)

where ‖.‖∗ is the dual norm of ‖.‖.
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2 Convex Functions

Definition

• A function f : Rn → R is convex if domf is convex and for all x, y ∈ domf , 0 ≤ θ ≤ 1,

f(θx + (1− θ)y) ≤ θf(x) + (1 − θ)f(y) (27)

• A function f : Rn → R is strictly convex if domf is convex and for all x, y ∈ domf , x 6= y, 0 < θ < 1,

f(θx + (1− θ)y) < θf(x) + (1 − θ)f(y) (28)

• A function f : Rn → R is concave if −f is convex.

Fundamental Properties

• f is convex if and only if it is convex when restricted to any line that intersects its domain; i.e., for all
x ∈ domf and ν,

g(t) = f(x+ tν) (29)

is convex over {t | x+ tν ∈ domf}.

• First order condition: Suppose that f is differentiable. A function f with a convex domain domf is
convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) (30)

for all x, y ∈ domf .

• Second order condition: Suppose that f is twice differentiable. A function f with a convex domain
domf is convex if and only if its Hessian

∇2f(x) � 0 (31)

for all x ∈ domf . A function f with a convex domain domf is stricly convex if

∇2f(x) ≻ 0 (32)

for all x ∈ domf (the converse is not true).

• Sublevel sets: The sublevel set of f is

Cα = {x ∈ domf | f(x) ≤ α} (33)

If f is convex, then Cα is convex for every α (the converse is not true).

• Epigraph: The epigraph of f is

epif = {(x, t) | x ∈ domf, f(x) ≤ t} (34)

f is convex if and only if epif is convex.
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Examples

• Examples on R:

– eax is convex on R

– log x is concave on R++

– x log x is convex on R++

– log
∫ x

−∞ e−t2/2dt is concave on R

• Examples on Rn:

– A linear function aTx+ b is convex and concave.

– A quadratic function xTPx + 2qTx + r is convex if and only if P � 0, and is strictly convex if
P ≻ 0.

– Every norm ‖x‖ is convex.

– max{x1, . . . , xn} is convex.

– The geometric mean (
∏n

i=1
xi)

1

n is concave on Rn
++.

• Examples on Rn×m

– tr(AX) is linear on Rn×m, and hence is convex and concave.

– The negative logarithmetic determinant function − log detX is convex on Sn
++.

– tr(X−1) is convex on Sn
++.

Jensen Inequality

• For a convex f ,
f(θx + (1− θ)y) ≤ θf(x) + (1 − θ)f(y) (35)

holds for any x, y ∈ domf and 0 ≤ θ ≤ 1.

• Extension: For a convex f ,
f(Ez) ≤ Ef(z) (36)

for any random variable z.

• Jensen inequality can be used to derive certain inequalities; e.g., the arithmetic-geometric mean in-
equality: √

ab ≤ a+ b

2
, a, b ≥ 0 (37)

and
(

n
∏

i=1

xi

)
1

n

≤ 1

n

n
∑

i=1

xi, xi ≥ 0, i = 1, . . . , n (38)
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Convexity Preserving Operations

• Nonnegative weighted sums:

f1, . . . , fm convex, w1, . . . , wm ≥ 0 =⇒
m
∑

i=1

wifi convex (39)

f(x, y) convex in x for each y ∈ A, w(y) ≥ 0 for each y ∈ A =⇒
∫

A

w(y)f(x, y)dy convex (40)

Example: f(x) =
∑

i=1
xi log xi is convex on Rn

++.

• Composition with an affine mapping:
g(x) = f(Ax+ b) (41)

is convex if f is convex.

• Pointwise maximum and supremum:

f1, f2 convex =⇒ g(x) = max{f1(x), f2(x)} convex (42)

f(x, y) convex in x for each y ∈ A =⇒ g(x) = sup
y∈A

f(x, y) convex (43)

Examples:

– A piecewise linear function f(x) = maxi=1,...,L aTi x+ bi is convex.

– f(x) = supy∈C ‖x− y‖ is convex for any set C.

– The largest eigenvalue of X

f(X) = λmax(X)

= sup
‖y‖2=1

yTXy = sup
‖y‖2=1

tr(XyyT ) (44)

is convex on Sn.

– The 2-norm of X

f(X) = ‖X‖2
= sup

‖y‖2=1

‖Xy‖2 (45)

is convex on Rn×m.

• Composition: Let f(x) = h(g(x)), where h : R → R, and g : Rn → R. Let

h̃(x) =

{

h(x), x ∈ domh
∞, otherwise

(46)

Then,

f is convex if h̃ is convex and nondecreasing, and g is convex.

f is convex if h̃ is convex and nonincreasing, and g is concave.

• Minimization:

f(x, y) convex in (x, y), C convex nonempty =⇒ g(x) = inf
y∈C

f(x, y) convex (47)

provided that g(x) > −∞ for some x.

Examples:
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– dist(x, S) = infy∈S ‖x− y‖ is convex for convex S.

– The Schur complement
[

A B
BT C

]

� 0 ⇐⇒ C � 0, A−BC†BT � 0 (48)

may be proven by the convex minimization property.

• Perspective: The perspective of a function f is a function g : Rn+1 → R

g(x, t) = tf(x/t), domg = {(x, t) | x/t ∈ domf, t > 0} (49)

If f is convex then g is convex.

Quasiconvex Functions

• Definition:

– A function f : Rn → R is quasiconvex (or unimodal) if domf is convex and the sublevel set

Sα = {x ∈ domf | f(x) ≤ α} (50)

is convex for every α.

– A function f is quasiconcave if −f is quasiconvex.

– A function f is quasilinear if f is quasiconvex and quasiconcave.

• Examples:

– log x is quasilinear on R++.

– A linear fractional function

f(x) =
aTx+ b

cTx+ d
, domf = {x | cTx+ d > 0} (51)

is quasilinear.

– rankX is quasiconcave on Sn
+ (proven using the modified Jensen inequality).

• Modified Jensen inequality: f is quasiconvex if and only if for any x, y ∈ domf , and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ max{f(x), f(y)} (52)

• First-order condition: Suppose that f is differentiable. f is quasiconvex if and only if domf is convex
and for all x, y ∈ domf

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0 (53)

• Second-order condition: Suppose f is differentiable. If f is quasiconvex then for all x ∈ domf , y ∈ Rn,

yT∇f(x) = 0 =⇒ yT∇2f(x)y ≥ 0 (54)

Convexity with respect to Generalized Inequality

• Let K be a proper cone. A function f : Rn → Rm is K-convex if for all x, y ∈ domf and 0 ≤ θ ≤ 1,

f(θx + (1− θ)y) �K θf(x) + (1 − θ)f(y) (55)

• For K = Rn
+, a K-convex function is a function for which each component function fi is convex.

• Consider K = Sn
+.

– f(X) = XTX is K-convex on Rn×m.

– f(X) = X−1 is K-convex on Sn
++.
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