ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 9

Mar. 31, 2013
Q1. (a) Suppose that we are given a set of discrete points $\left\{x_{i}\right\}_{i=1}^{K+L}$. Show that there exists an hyperplane $a^{T} x=b$ that strictly separates $\left\{x_{i}\right\}_{i=1}^{K}$ from $\left\{x_{i}\right\}_{i=K+1}^{K+L}$, i.e.,

$$
a^{T} x_{i}<b, \quad i=1, \ldots, K, \quad a^{T} x_{i}>b, \quad i=K+1, \ldots, K+L,
$$

if and only if there exist two parallel hyperplanes $\tilde{a}^{T} x=\tilde{b}-1$ and $\tilde{a}^{T} x=\tilde{b}+1$ which separate $\left\{x_{i}\right\}_{i=1}^{K}$ from $\left\{x_{i}\right\}_{i=K+1}^{K+L}$ in the sense that

$$
\tilde{a}^{T} x_{i} \leq \tilde{b}-1, \quad i=1, \ldots, K, \quad \tilde{a}^{T} x_{i} \geq \tilde{b}+1 \quad i=K+1, \ldots, K+L
$$

(b) Suppose that we are given $K+L$ ellipsoids

$$
\epsilon_{i}=\left\{P_{i} u+q_{i} \mid\|u\|_{2} \leq 1\right\}, \quad i=1, \ldots, K+L
$$

where $P_{i} \in \mathbf{S}^{n}$. We are interested in finding a hyperplane that strictly separates $\epsilon_{1}, \ldots, \epsilon_{K}$ from $\epsilon_{K+1}, \ldots, \epsilon_{K+L}$, i.e. we want to compute $a \in \mathbf{R}^{n}, b \in \mathbf{R}$ such that

$$
a^{T} x+b<0 \text { for } x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}, \quad a^{T} x+b>0 \text { for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}
$$

or prove that no such hyperplane exists. Express this problem as an SOCP feasibility problem.

Solution:

(a) Suppose that there exists an hyperplane $a^{T} x=b$ that strictly separate S_{1} and S_{2}, i.e.,

$$
a^{T} x_{i}<b, \quad i=1, \ldots, K, \quad a^{T} x_{i}>b \quad i=K+1, \ldots, K+L,
$$

Then there exists an $\delta>0$ such that

$$
a^{T} x_{i} \leq b-\delta, \quad i=1, \ldots, K, \quad a^{T} x_{i} \geq b+\delta \quad i=K+1, \ldots, K+L
$$

or equivalently

$$
(a / \delta)^{T} x_{i} \leq b / \delta-1, \quad i=1, \ldots, K, \quad(a / \delta)^{T} x_{i} \geq b / \delta+1 \quad i=K+1, \ldots, K+L
$$

Then it suffices to take $\tilde{a}=a / \epsilon$ and $\tilde{b}=b / \epsilon$.
Conversely, given \tilde{a} and \tilde{b}, it suffices to take $a=\tilde{a}$ and $b=\tilde{b}$.
(b) Step 1. We first show that there exists a hyperplane $a^{T} x=b$ that strictly separates $\epsilon_{1}, \ldots, \epsilon_{K}$ from $\epsilon_{K+1}, \ldots, \epsilon_{K+L}$, i.e. we want to compute $a \in \mathbf{R}^{n}, b \in \mathbf{R}$ such that

$$
a^{T} x<b \text { for } x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}, \quad a^{T} x>b \text { for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L},
$$

if and only if there exist \tilde{a} and \tilde{b} such that

$$
\tilde{a}^{T} x \leq \tilde{b}-1 \text { for } x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}, \quad \tilde{a}^{T} x \geq \tilde{b}+1 \text { for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}
$$

Suppose such a hyperplane $a^{T} x=b$ exists. Consider the following problem

$$
\begin{aligned}
v^{\star}=\sup _{x \in \mathbf{R}^{n}} & a^{T} x \\
\text { s.t. } & x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K},
\end{aligned}
$$

This problem can be rewritten as

$$
v^{\star}=\max _{i=1, \ldots, K} \sup _{x \in \epsilon_{i}} a^{T} x
$$

An optimal solution of each of the inner problem is $x_{i}^{\star}=P_{i} P_{i}^{T} a_{i} /\left\|P_{i}^{T} a_{i}\right\|+q_{i}$ if $P_{i}^{T} a_{i} \neq 0$, and $x_{i}^{\star}=q_{i}$ if $P_{i}^{T} a_{i}=0$. Note that this optimal solution is achievable for each inner problems. Therefore, we have

$$
v^{\star}=\max _{i=1, \ldots, K} a^{T} x_{i}^{\star}<b
$$

The inequality is due to the fact that each $x_{i}^{\star} \in \epsilon_{i}$ and $b>a^{T} x$ for all $x \in \epsilon_{i}$. As a result, we have

$$
b>\sup _{x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}} a^{T} x,
$$

Similarly, we have

$$
b<\inf _{x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}} a^{T} x .
$$

This implies that there exists a $\delta>0$ such that

$$
\begin{aligned}
& b-\delta \geq \sup _{x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}} a^{T} x \\
& b+\delta \leq \inf _{x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}} a^{T} x .
\end{aligned}
$$

or equivalently

$$
a^{T} x \leq b-\delta \text { for } x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}, \quad a^{T} x \geq b+\delta \text { for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}
$$

or equivalently

$$
\tilde{a}^{T} x \leq \tilde{b}-1 \text { for } x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}, \quad \tilde{a}^{T} x \geq \tilde{b}+1 \text { for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}
$$

where $\tilde{a}=a / \delta$ and $\tilde{b}=b / \delta$.
Conversely, given \tilde{a} and \tilde{b}, it suffices to take $a=\tilde{a}$ and $b=\tilde{b}$.
Step 2. With the previous result, the feasibility problem can be formalized as

$$
\begin{array}{ll}
\text { find } & \tilde{a}, \tilde{b} \\
\text { s.t. } & \tilde{a}^{T} x_{i} \leq \tilde{b}-1, \forall x_{i} \in \epsilon_{i}, i=1, \ldots, K \tag{1}\\
& \tilde{a}^{T} x_{i} \geq \tilde{b}+1, \forall x_{i} \in \epsilon_{i}, i=K+1, \ldots, K+L
\end{array}
$$

which can be written as

$$
\begin{aligned}
\text { find } & \tilde{a}, \tilde{b} \\
\text { s.t. } & \left\|P_{i}^{T} \tilde{a}_{i}\right\|_{2}+\tilde{a}^{T} q_{i} \leq \tilde{b}-1, \quad i=1, \ldots, K \\
& -\left\|P_{i}^{T} \tilde{a}_{i}\right\|_{2}+\tilde{a}^{T} q_{i} \geq \tilde{b}+1, \quad i=K+1, \ldots, K+L
\end{aligned}
$$

which is an SOCP feasibility problem.

Q2. Show how to convert the conic form SDP to the standard form SDP.
Conic form:

$$
\begin{aligned}
\min _{x \in \mathbf{R}^{n}} & c^{T} x \\
\text { s.t. } & x_{1} F_{1}+\ldots+x_{n} F_{n}+G \preceq 0 \\
& A x=b,
\end{aligned}
$$

where $G, F_{1}, \ldots, F_{n} \in \mathbf{S}^{k}$, and $A \in \mathbf{R}^{m \times n}$.
Standard form:

$$
\begin{aligned}
\min _{X \in \mathbf{S}^{n}} & \operatorname{tr}(C X) \\
\text { s.t. } & \operatorname{tr}\left(A_{i} X\right)=b_{i}, i=1, \ldots, p \\
& X \succeq 0
\end{aligned}
$$

where $C, A_{1}, \ldots, A_{p} \in \mathbf{S}^{n}$.

Solution: Introduce some PSD matrices $Y_{0} \in \mathbf{S}_{+}^{k}$, and $Y_{i} \in \mathbf{S}_{+}^{2}$ for $i=1, \ldots, n$. Then we write the conic form SDP as

$$
\begin{aligned}
\min _{x,\left\{Y_{i}\right\}_{i=0}^{n}} & c^{T} x \\
\text { s.t. } & A x=b, \\
& -Y_{0}=x_{1} F_{1}+\ldots+x_{n} F_{n}+G \\
& x_{i}=\left[Y_{i}\right]_{12}, i=1, \ldots, n \\
& Y_{i} \succeq 0, i=0, \ldots, n .
\end{aligned}
$$

We now can remove the variable x.

$$
\begin{aligned}
\min _{\left\{Y_{i}\right\}_{i=0}^{n}} & \sum_{i=1}^{n} c_{i}\left[Y_{i}\right]_{12} \\
\text { s.t. } & \sum_{i=1}^{n} A_{j i}\left[Y_{i}\right]_{12}=b_{j}, j=1, \ldots, m \\
& -Y_{0}=\left[Y_{1}\right]_{12} F_{1}+\ldots+\left[Y_{n}\right]_{12} F_{n}+G, \\
& Y_{i} \succeq 0, i=0, \ldots, m .
\end{aligned}
$$

Introduce a PSD matrices $Y \in \mathbf{S}_{+}^{k+2 n}$, which has the block diagonal structure of $Y=\operatorname{diag}\left(Y_{0}, \ldots, Y_{n}\right)$. Note that this block diagonal structure can be imposed by the constraint $\operatorname{tr} A_{i} Y=0$ for some A_{i}. Also note that all the equality constraints can be rewrite in this form as well. Therefore we can rewrite the conic form SDP to a standard form SDP.

