ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 9

Mar. 31, 2013

Q1. (a) Suppose that we are given a set of discrete points $\{x_i\}_{i=1}^{K+L}$. Show that there exists an hyperplane $a^T x = b$ that strictly separates $\{x_i\}_{i=1}^{K}$ from $\{x_i\}_{i=K+1}^{K+L}$, i.e.,

$$a^T x_i < b, \quad i = 1, \dots, K, \qquad a^T x_i > b, \quad i = K + 1, \dots, K + L,$$

if and only if there exist two parallel hyperplanes $\tilde{a}^T x = \tilde{b} - 1$ and $\tilde{a}^T x = \tilde{b} + 1$ which separate $\{x_i\}_{i=1}^{K}$ from $\{x_i\}_{i=K+1}^{K+L}$ in the sense that

$$\tilde{a}^T x_i \leq \tilde{b} - 1, \quad i = 1, \dots, K, \qquad \tilde{a}^T x_i \geq \tilde{b} + 1 \quad i = K + 1, \dots, K + L.$$

(b) Suppose that we are given K + L ellipsoids

$$\epsilon_i = \{ P_i u + q_i \mid \|u\|_2 \le 1 \}, \quad i = 1, \dots, K + L,$$

where $P_i \in \mathbf{S}^n$. We are interested in finding a hyperplane that strictly separates $\epsilon_1, \ldots, \epsilon_K$ from $\epsilon_{K+1}, \ldots, \epsilon_{K+L}$, i.e. we want to compute $a \in \mathbf{R}^n$, $b \in \mathbf{R}$ such that

$$a^T x + b < 0$$
 for $x \in \epsilon_1 \cup \ldots \cup \epsilon_K$, $a^T x + b > 0$ for $x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}$,

or prove that no such hyperplane exists. Express this problem as an SOCP feasibility problem.

Solution:

(a) Suppose that there exists an hyperplane $a^T x = b$ that strictly separate S_1 and S_2 , i.e.,

$$a^{T}x_{i} < b, \quad i = 1, \dots, K, \qquad a^{T}x_{i} > b \quad i = K + 1, \dots, K + L$$

Then there exists an $\delta > 0$ such that

$$a^T x_i \leq b - \delta, \quad i = 1, \dots, K, \qquad a^T x_i \geq b + \delta \quad i = K + 1, \dots, K + L_{\delta}$$

or equivalently

$$(a/\delta)^T x_i \le b/\delta - 1, \quad i = 1, \dots, K, \qquad (a/\delta)^T x_i \ge b/\delta + 1 \quad i = K + 1, \dots, K + L,$$

Then it suffices to take $\tilde{a} = a/\epsilon$ and $\tilde{b} = b/\epsilon$.

Conversely, given \tilde{a} and \tilde{b} , it suffices to take $a = \tilde{a}$ and $b = \tilde{b}$.

(b) **Step 1**. We first show that there exists a hyperplane $a^T x = b$ that strictly separates $\epsilon_1, \ldots, \epsilon_K$ from $\epsilon_{K+1}, \ldots, \epsilon_{K+L}$, i.e. we want to compute $a \in \mathbf{R}^n$, $b \in \mathbf{R}$ such that

$$a^T x < b$$
 for $x \in \epsilon_1 \cup \ldots \cup \epsilon_K$, $a^T x > b$ for $x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}$,

if and only if there exist \tilde{a} and \tilde{b} such that

$$\tilde{a}^T x \leq \tilde{b} - 1 \text{ for } x \in \epsilon_1 \cup \ldots \cup \epsilon_K, \quad \tilde{a}^T x \geq \tilde{b} + 1 \text{ for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}.$$

Suppose such a hyperplane $a^T x = b$ exists. Consider the following problem

$$v^{\star} = \sup_{x \in \mathbf{R}^n} a^T x$$

s.t. $x \in \epsilon_1 \cup \ldots \cup \epsilon_K$

This problem can be rewritten as

$$v^{\star} = \max_{i=1,\dots,K} \sup_{x \in \epsilon_i} \quad a^T x$$

An optimal solution of each of the inner problem is $x_i^* = P_i P_i^T a_i / ||P_i^T a_i|| + q_i$ if $P_i^T a_i \neq 0$, and $x_i^* = q_i$ if $P_i^T a_i = 0$. Note that this optimal solution is achievable for each inner problems. Therefore, we have

$$v^{\star} = \max_{i=1,\dots,K} a^T x_i^{\star} < b$$

The inequality is due to the fact that each $x_i^* \in \epsilon_i$ and $b > a^T x$ for all $x \in \epsilon_i$. As a result, we have

$$b > \sup_{x \in \epsilon_1 \cup \dots \cup \epsilon_K} a^T x,$$

Similarly, we have

$$b < \inf_{x \in \epsilon_{K+1} \cup \dots \cup \epsilon_{K+L}} a^T x.$$

This implies that there exists a $\delta > 0$ such that

$$b - \delta \ge \sup_{x \in \epsilon_1 \cup \dots \cup \epsilon_K} a^T x,$$

$$b + \delta \le \inf_{x \in \epsilon_K + 1 \cup \dots \cup \epsilon_K + L} a^T x.$$

or equivalently

$$a^T x \leq b - \delta$$
 for $x \in \epsilon_1 \cup \ldots \cup \epsilon_K$, $a^T x \geq b + \delta$ for $x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}$,

or equivalently

$$\tilde{a}^T x \leq \tilde{b} - 1 \text{ for } x \in \epsilon_1 \cup \ldots \cup \epsilon_K, \quad \tilde{a}^T x \geq \tilde{b} + 1 \text{ for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L},$$

where $\tilde{a} = a/\delta$ and $\tilde{b} = b/\delta$.

Conversely, given \tilde{a} and \tilde{b} , it suffices to take $a = \tilde{a}$ and $b = \tilde{b}$. Step 2. With the previous result, the feasibility problem can be formalized as

find
$$\tilde{a}, b$$

s.t. $\tilde{a}^T x_i \leq \tilde{b} - 1, \forall x_i \in \epsilon_i, i = 1, \dots, K,$
 $\tilde{a}^T x_i \geq \tilde{b} + 1, \forall x_i \in \epsilon_i, i = K + 1, \dots, K + L.$
(1)

which can be written as

find
$$\tilde{a}, \tilde{b}$$

s.t. $\|P_i^T \tilde{a}_i\|_2 + \tilde{a}^T q_i \leq \tilde{b} - 1, \quad i = 1, \dots, K,$
 $- \|P_i^T \tilde{a}_i\|_2 + \tilde{a}^T q_i \geq \tilde{b} + 1, \quad i = K + 1, \dots, K + L,$

which is an SOCP feasibility problem.

Q2. Show how to convert the conic form SDP to the standard form SDP. Conic form:

$$\min_{x \in \mathbf{R}^n} \quad c^T x$$

s.t. $x_1 F_1 + \ldots + x_n F_n + G \leq 0,$
 $Ax = b,$

where $G, F_1, \ldots, F_n \in \mathbf{S}^k$, and $A \in \mathbf{R}^{m \times n}$. Standard form:

$$\min_{X \in \mathbf{S}^n} \quad \mathbf{tr}(CX)$$

s.t.
$$\mathbf{tr}(A_i X) = b_i, \ i = 1, \dots, p$$
$$X \succeq 0,$$

where $C, A_1, \ldots, A_p \in \mathbf{S}^n$.

Solution: Introduce some PSD matrices $Y_0 \in \mathbf{S}_+^k$, and $Y_i \in \mathbf{S}_+^2$ for i = 1, ..., n. Then we write the conic form SDP as

 $\min_{\substack{x, \{Y_i\}_{i=0}^n \\ s.t. \\ x_i = [Y_i]_{12}, i = 1, \dots, n \\ Y_i \succeq 0, i = 0, \dots, n.}} c^T x$

We now can remove the variable x.

$$\min_{\{Y_i\}_{i=0}^n} \sum_{i=1}^n c_i [Y_i]_{12}$$

s.t.
$$\sum_{i=1}^n A_{ji} [Y_i]_{12} = b_j, \ j = 1, \dots, m$$
$$-Y_0 = [Y_1]_{12} F_1 + \dots + [Y_n]_{12} F_n + G,$$
$$Y_i \succeq 0, \ i = 0, \dots, m.$$

Introduce a PSD matrices $Y \in \mathbf{S}_{+}^{k+2n}$, which has the block diagonal structure of $Y = \text{diag}(Y_0, \ldots, Y_n)$. Note that this block diagonal structure can be imposed by the constraint $\mathbf{tr}A_iY = 0$ for some A_i . Also note that all the equality constraints can be rewrite in this form as well. Therefore we can rewrite the conic form SDP to a standard form SDP.