ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 8

Mar. 24, 2013

Q1. Show that $X=B^{T} A^{-1} B$ solves the SDP

$$
\begin{aligned}
\min _{X \in \mathbf{S}^{n}} & \operatorname{tr} X \\
\text { s.t. } & {\left[\begin{array}{cc}
A & B \\
B^{T} & X
\end{array}\right] \succeq 0, }
\end{aligned}
$$

where $A \in \mathbf{S}_{++}^{m}$ and $B \in \mathbf{R}^{m \times n}$ are given data. Conclude that $\operatorname{tr}\left(B^{T} A^{-1} B\right)$ is a convex function of (A, B), in the domain of $\mathbf{S}_{+}^{n} \times \mathbf{R}^{m \times n}$.

Solution: We will show that $X=B^{T} A^{-1} B$ is the unique solution indeed. By Schur's complement, we can rewrite the problem as

$$
\begin{aligned}
\min _{X \in \mathbf{S}^{n}} & \operatorname{tr} X \\
\text { s.t. } & X \succeq B^{T} A^{-1} B .
\end{aligned}
$$

Therefore, $X=B^{T} A^{-1} B$ is an feasible solution. We claim that $X=B^{T} A^{-1} B$ is the only point that satisfies the following two conditions

$$
\left\{\begin{array}{l}
\operatorname{tr} X \leq \operatorname{tr} B^{T} A^{-1} B \\
X \succeq B^{T} A^{-1} B
\end{array}\right.
$$

Too see this, observe that $X_{i i} \geq\left[B^{T} A^{-1} B\right]_{i i}$ for $i=1, \ldots, n$ and $\operatorname{tr} X=\sum_{i=1}^{n} X_{i i} \leq \operatorname{tr} B^{T} A^{-1} B$. Therefore, we have $X_{i i}=\left[B^{T} A^{-1} B\right]_{i i}$ and $\left[X-B^{T} A^{-1} B\right]_{i i}=0$ for $i=1, \ldots, n$. Because $X-$ $B^{T} A^{-1} B \succeq 0$, we have $X=B^{T} A^{-1} B$. To conclude, no other feasible point produces a smaller objective value than $X=B^{T} A^{-1} B$. Therefore, $X=B^{T} A^{-1} B$ is the unique optimal solution.

For convenience, let $f(A, B)=\operatorname{tr}\left(B^{T} A^{-1} B\right)$. For any $A_{1}, A_{2} \in \mathbf{S}_{++}^{m}, B_{1}, B_{2} \in \mathbf{R}^{m \times n}$, and $0 \leq \theta \leq 1$, we have

$$
\left.\begin{array}{rl}
f\left(\theta A_{1}+(1-\theta) A_{2}, \theta B_{1}+(1-\theta) B_{2}\right)=\min _{X \in \mathbf{S}^{n}} & \operatorname{tr} X \\
& \text { s.t. }
\end{array} \begin{array}{cc}
\theta A_{1}+(1-\theta) A_{2} & \theta B_{1}+(1-\theta) B_{2} \\
\theta B_{1}^{T}+(1-\theta) B_{2}^{T} & X
\end{array}\right] \succeq 0 . .2
$$

We can replace X by $\theta X_{1}+(1-\theta) X_{2}$ where $X_{1}, X_{2} \in \mathbf{S}_{+}^{n}$. Therefore,

$$
\begin{aligned}
& f\left(\theta A_{1}+(1-\theta) A_{2}, \theta B_{1}+(1-\theta) B_{2}\right)=\min _{X_{1}, X_{2} \in \mathbf{S}^{n}} \operatorname{tr} \theta X_{1}+(1-\theta) X_{2} \\
& \text { s.t. }\left[\begin{array}{cc}
\theta A_{1}+(1-\theta) A_{2} & \theta B_{1}+(1-\theta) B_{2} \\
\theta B_{1}^{T}+(1-\theta) B_{2}^{T} & \theta X_{1}+(1-\theta) X_{2}
\end{array}\right] \succeq 0 .
\end{aligned}
$$

which can be upper bounded by

$$
\begin{aligned}
\min _{X_{1}, X_{2} \in \mathbf{S}^{n}} & \operatorname{tr} \theta X_{1}+(1-\theta) X_{2} \\
\text { s.t. } & {\left[\begin{array}{ll}
A_{1} & B_{1} \\
B_{1}^{T} & X_{1}
\end{array}\right] \succeq 0, } \\
& {\left[\begin{array}{ll}
A_{2} & B_{2} \\
B_{2}^{T} & X_{2}
\end{array}\right] \succeq 0 . }
\end{aligned}
$$

This is just $\theta f\left(A_{1}, B_{1}\right)+(1-\theta) f\left(A_{2}, B_{2}\right)$.

Q2. Formulate the following complex-valued infinity norm minimization problem as an SOCP.

$$
\begin{aligned}
\min _{x \in \mathbf{C}^{n}} & \|x\|_{\infty} \\
\text { s.t. } & A x=b,
\end{aligned}
$$

where $A \in \mathbf{C}^{m \times n}$ and $b \in \mathbf{C}^{m}$. Hint: transform the complex-valued data and variable to real-valued data and variable.

Solution: Denote $x=x_{R}+\boldsymbol{j} x_{I}$, where $x_{R} \in \mathbf{R}^{n}$ and $x_{I} \in \mathbf{R}^{n}$ are the real and imaginary parts of x, respectively. Similarly, let $A=A_{R}+\boldsymbol{j} A_{I}$ and $b=b_{R}+\boldsymbol{j} b_{I}$. Then we can rewrite the problem as

$$
\begin{aligned}
\min _{x_{R}, x_{I} \in \mathbf{R}^{n}} & \max _{i=1, \ldots, n} \sqrt{x_{R, i}^{2}+x_{I, i}^{2}} \\
\text { s.t. } & {\left[\begin{array}{cc}
A_{R} & -A_{I} \\
A_{I} & A_{R}
\end{array}\right]\left[\begin{array}{c}
x_{R} \\
x_{I}
\end{array}\right]=\left[\begin{array}{c}
b_{R} \\
b_{I}
\end{array}\right], }
\end{aligned}
$$

Adding a slack variable t, we have

$$
\begin{array}{rl}
\min _{x_{R}, x_{I} \in \mathbf{R}^{n}} & t \\
\text { s.t. } & \sqrt{x_{R, i}^{2}+x_{I, i}^{2}} \leq t, \quad i=1, \ldots, n, \\
& {\left[\begin{array}{cc}
A_{R} & -A_{I} \\
A_{I} & A_{R}
\end{array}\right]\left[\begin{array}{c}
x_{R} \\
x_{I}
\end{array}\right]=\left[\begin{array}{c}
b_{R} \\
b_{I}
\end{array}\right],}
\end{array}
$$

which is an SOCP.

Q3. Consider the problem, with variable $x \in \mathbf{R}^{n}$,

$$
\begin{aligned}
\min _{x \in \mathbf{R}^{n}} & c^{T} x \\
\text { s.t. } & A x \preceq b \text { for all } A \in \mathcal{A},
\end{aligned}
$$

where $\mathcal{A} \subset \mathbf{R}^{m \times n}$ is the set

$$
\mathcal{A}=\left\{A \in \mathbf{R}^{m \times n} \mid \bar{A}_{i j}-V_{i j} \leq A_{i j} \leq \bar{A}_{i j}+V_{i j}, i=1, \ldots, m, j=1, \ldots, n\right\}
$$

(The matrices \bar{A} and V are given.) Express this problem as an LP.

Solution: Let us first characterize the feasible set of x. Consider the following problem

$$
\begin{aligned}
\max _{a_{i} \in \mathbf{R}^{n}} & a_{i}^{T} x \\
\text { s.t. } & a_{i} \in \mathcal{A}_{i}
\end{aligned}
$$

where $\mathcal{A}_{i}=\left\{a_{i} \in \mathbf{R}^{n} \mid \bar{A}_{i j}-V_{i j} \leq a_{i j} \leq \bar{A}_{i j}+V_{i j}, j=1, \ldots, n\right\}$. Obviously, an optimal solution is given by some $a_{i j}=\bar{A}_{i j} \pm V_{i j}$ for $i=1, \ldots, m$. Therefore, the constraint $A x \preceq b$ for all $A \in \mathcal{A}$ can be written as for $i=1, \ldots, m$,

$$
\sum_{j=1}^{n}\left(A_{i j} \pm V_{i j}\right) x_{j} \leq b, \text { for all possible choice of sign of } V_{i j}
$$

This again can be written as

$$
A x+V|x| \leq b
$$

Therefore, the original problem can be written as

$$
\begin{aligned}
\min _{x \in \mathbf{R}^{n}} & c^{T} x \\
\text { s.t. } & A x+V|x| \leq b,
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
\min _{x, y \in \mathbf{R}^{n}} & c^{T} x \\
\text { s.t. } & A x+V y \leq b, \\
& -y \leq x \leq y .
\end{aligned}
$$

