ELEG5481 Signal Processing Optimization Techniques
 Tutorial 9

Mar. 31, 2013
Q1. (a) Suppose that we are given a set of discrete points $\left\{x_{i}\right\}_{i=1}^{K+L}$. Show that there exists an hyperplane $a^{T} x=b$ that strictly separates $\left\{x_{i}\right\}_{i=1}^{K}$ from $\left\{x_{i}\right\}_{i=K+1}^{K+L}$, i.e.,

$$
a^{T} x_{i}<b, \quad i=1, \ldots, K, \quad a^{T} x_{i}>b, \quad i=K+1, \ldots, K+L,
$$

if and only if there exist two parallel hyperplanes $\tilde{a}^{T} x=\tilde{b}-1$ and $\tilde{a}^{T} x=\tilde{b}+1$ which separate $\left\{x_{i}\right\}_{i=1}^{K}$ from $\left\{x_{i}\right\}_{i=K+1}^{K+L}$ in the sense that

$$
\tilde{a}^{T} x_{i} \leq \tilde{b}-1, \quad i=1, \ldots, K, \quad \tilde{a}^{T} x_{i} \geq \tilde{b}+1 \quad i=K+1, \ldots, K+L
$$

(b) Suppose that we are given $K+L$ ellipsoids

$$
\epsilon_{i}=\left\{P_{i} u+q_{i} \mid\|u\|_{2} \leq 1\right\}, \quad i=1, \ldots, K+L
$$

where $P_{i} \in \mathbf{S}^{n}$. We are interested in finding a hyperplane that strictly separates $\epsilon_{1}, \ldots, \epsilon_{K}$ from $\epsilon_{K+1}, \ldots, \epsilon_{K+L}$, i.e. we want to compute $a \in \mathbf{R}^{n}, b \in \mathbf{R}$ such that

$$
a^{T} x+b<0 \text { for } x \in \epsilon_{1} \cup \ldots \cup \epsilon_{K}, \quad a^{T} x+b>0 \text { for } x \in \epsilon_{K+1} \cup \ldots \cup \epsilon_{K+L}
$$

or prove that no such hyperplane exists. Express this problem as an SOCP feasibility problem.

Q2. Show how to convert the conic form SDP to the standard form SDP.
Conic form:

$$
\begin{aligned}
\min _{x \in \mathbf{R}^{n}} & c^{T} x \\
\text { s.t. } & x_{1} F_{1}+\ldots+x_{n} F_{n}+G \preceq 0, \\
& A x=b,
\end{aligned}
$$

where $G, F_{1}, \ldots, F_{n} \in \mathbf{S}^{k}$, and $A \in \mathbf{R}^{m \times n}$.
Standard form:

$$
\begin{aligned}
\min _{X \in \mathbf{S}^{n}} & \operatorname{tr}(C X) \\
\text { s.t. } & \operatorname{tr}\left(A_{i} X\right)=b_{i}, i=1, \ldots, p \\
& X \succeq 0
\end{aligned}
$$

where $C, A_{1}, \ldots, A_{p} \in \mathbf{S}^{n}$.

