ELEG5481 Signal Processing Optimization Techniques
 Tutorial 8

Mar. 24, 2013

Q1. Show that $X=B^{T} A^{-1} B$ solves the SDP

$$
\begin{aligned}
\min _{X \in \mathbf{S}^{n}} & \operatorname{tr} X \\
\text { s.t. } & {\left[\begin{array}{cc}
A & B \\
B^{T} & X
\end{array}\right] \succeq 0, }
\end{aligned}
$$

where $A \in \mathbf{S}_{++}^{m}$ and $B \in \mathbf{B}^{m \times n}$ are given data. Conclude that $\operatorname{tr}\left(B^{T} A^{-1} B\right)$ is a convex function of (A, B), in the domain of $\mathbf{S}_{+}^{n} \times \mathbf{R}^{m \times n}$.

Q2. Formulate the following complex-valued infinity norm minimization problem as an SOCP.

$$
\begin{aligned}
\min _{x \in \mathbf{C}^{n}} & \|x\|_{\infty} \\
\text { s.t. } & A x=b,
\end{aligned}
$$

where $A \in \mathbf{C}^{m \times n}$ and $b \in \mathbf{C}^{m}$. Hint: transform the complex-valued data and variable to real-valued data and variable.

Q3. Consider the problem, with variable $x \in \mathbf{R}^{n}$,

$$
\begin{aligned}
\min _{x \in \mathbf{R}^{n}} & c^{T} x \\
\text { s.t. } & A x \preceq b \text { for all } A \in \mathcal{A},
\end{aligned}
$$

where $\mathcal{A} \subset \mathbf{R}^{m \times n}$ is the set

$$
\mathcal{A}=\left\{A \in \mathbf{R}^{m \times n} \mid \bar{A}_{i j}-V_{i j} \leq A_{i j} \leq \bar{A}_{i j}+V_{i j}, i=1, \ldots, m, j=1, \ldots, n\right\}
$$

(The matrices \bar{A} and V are given.) Express this problem as an LP.

