ELEG5481 Signal Processing Optimization Techniques Tutorial 7

Mar. 17, 2013

Q1. Use CVX to solve the following problem

$$\min_{\substack{x,y \\ x,y}} \quad c^T x \\ \text{s.t.} \quad x = Ay \\ l_y \le y \le u_y, \\ l_x \le x \le u_x, \\ x \in \mathbf{R}^m, \ y \in \mathbf{R}^n,$$

where $A \in \mathbf{R}^{m \times n}$, $l_y, u_y \in \mathbf{R}^n$, $l_x, u_x \in \mathbf{R}^m$, and $c \in \mathbf{R}^m$ are given data.

Q2. Use CVX to solve the following problem

$$\min_{x,y} \quad x^T Q_0 x$$

s.t. $x = Ay$
 $x^T Q_i x \le b_i, \ i = 1, \dots, p$
 $y \le u,$
 $x \in \mathbf{R}^m, \ y \in \mathbf{R}^n,$

where $A \in \mathbf{R}^{m \times n}$, $Q_i \in \mathbf{S}^m_+$, $b \in \mathbf{R}^p$, and $u \in \mathbf{R}^n$ are given data.

Q3. Use CVX to solve the following problem

$$\begin{array}{ll} \min_{X} & \mathbf{tr}CX \\ \text{s.t.} & X \in \mathbf{H}_{+}^{n}, \\ & \mathbf{tr}A_{i}X \leq b_{i}, i=1,\ldots,p, \\ & \mathbf{tr}E_{j}X = f_{j}, j=1,\ldots,q \end{array}$$

where the given data are $C \in \mathbf{H}^n$, A_i , $E_j \in \mathbf{H}^n$, $b_i \ge 0$, and $f_j \ge 0$. Here, \mathbf{H}^n_+ denotes the set of Hermitian semidefinite matrix.