ELEG5481 Signal Processing Optimization Techniques
 Tutorial 7

Mar. 17, 2013

Q1. Use CVX to solve the following problem

$$
\begin{array}{cl}
\min _{x, y} & c^{T} x \\
\text { s.t. } & x=A y \\
& l_{y} \leq y \leq u_{y}, \\
& l_{x} \leq x \leq u_{x}, \\
& x \in \mathbf{R}^{m}, y \in \mathbf{R}^{n},
\end{array}
$$

where $A \in \mathbf{R}^{m \times n}, l_{y}, u_{y} \in \mathbf{R}^{n}, l_{x}, u_{x} \in \mathbf{R}^{m}$, and $c \in \mathbf{R}^{m}$ are given data.

Q2. Use CVX to solve the following problem

$$
\begin{array}{cl}
\min _{x, y} & x^{T} Q_{0} x \\
\text { s.t. } & x=A y \\
& x^{T} Q_{i} x \leq b_{i}, i=1, \ldots, p \\
& y \leq u \\
& x \in \mathbf{R}^{m}, y \in \mathbf{R}^{n},
\end{array}
$$

where $A \in \mathbf{R}^{m \times n}, Q_{i} \in \mathbf{S}_{+}^{m}, b \in \mathbf{R}^{p}$, and $u \in \mathbf{R}^{n}$ are given data.

Q3. Use CVX to solve the following problem

$$
\begin{array}{cl}
\min _{X} & \operatorname{tr} C X \\
\text { s.t. } & X \in \mathbf{H}_{+}^{n}, \\
& \boldsymbol{\operatorname { r r }} A_{i} X \leq b_{i}, i=1, \ldots, p, \\
& \boldsymbol{\operatorname { r r }} E_{j} X=f_{j}, j=1, \ldots, q,
\end{array}
$$

where the given data are $C \in \mathbf{H}^{n}, A_{i}, E_{j} \in \mathbf{H}^{n}, b_{i} \geq 0$, and $f_{j} \geq 0$. Here, \mathbf{H}_{+}^{n} denotes the set of Hermitian semidefinite matrix.

