ELEG5481 Signal Processing Optimization Techniques Tutorial 5

Mar. 4, 2013

Q1. Please point out what are the flaws in the following arguments.
(a) Question: Is the set $C=\left\{x \mid a_{1}^{T} x \leq b_{1}\right.$ or $\left.a_{2}^{T} x \leq b_{2}\right\}$ convex?

No. The union of two convex is not convex.
(b) Question: Show that the set $V=\left\{x \in \mathbf{R}^{n} \mid\left\|x-x_{0}\right\| \leq\left\|x-x_{i}\right\|, i=1, \ldots, n\right\}$ is a polyhedron. Argument: Because $\left\|x-x_{0}\right\| \leq\left\|x-x_{i}\right\| \Longrightarrow\left(x_{0}-x_{i}\right)^{T} x \geq \frac{1}{2}\left(x_{0}^{T} x_{0}-x_{i}^{T} x_{i}\right)$ for $i=1, \ldots, n$, we have

$$
V=\left\{x \left\lvert\,\left(x_{0}-x_{i}\right)^{T} x \geq \frac{1}{2}\left(x_{0}^{T} x_{0}-x_{i}^{T} x_{i}\right)\right., i=1, \ldots, n\right\} .
$$

Therefore V is a polyhedron.
(c) Given a polyhedron $P=\{x \mid A x \preceq b\}$ with nonempty interior, show how to find x_{0}, \ldots, x_{K} such that P is $V\left(x_{0}\right)$.
Argument: Let x_{i} be a point in the interior of P. Denote the i th row of A as a_{i}^{T}. Let x_{i} be the mirror image of x_{0} with respect to the hyperplane $a_{i}^{T} x=b$.
(d) Question: Show the following set is convex: $C=\{x \mid B(x, a) \subset S\}$, where $a \geq 0, S$ is a convex set, and $B(x, a)=\{y \mid\|y-x\| \leq a\}$.
Argument: Let $x_{1}, x_{2} \in C$, and $0 \leq \theta \leq 1$. We have $\left\|y-\left(\theta x_{1}+(1-\theta) x_{2}\right)\right\| \leq a$. (The remaining argument is skipped.)

Q2. Prove the Hadamard's inequality

$$
\operatorname{det} P \leq \prod_{i=1}^{n} P_{i i}
$$

where $P \in \mathbf{S}_{+}^{n}$.
(a) Step1. (Cholesky decomposition) Show that a PD matrix P can be decomposed as $P=R^{T} R$, where R is an upper triangular matrix with positive diagonal entries.
(b) Step2. Use the Cholesky decomposition to prove that the Hadamard's inequality is true for a PD matrix P.
(c) Step3. Show that the Hadamard's inequality is true for a non-PD symetric matrix P.

Q3. Show that

$$
f(x)=\prod_{k=1}^{n} x_{k}^{\alpha_{k}}, \quad \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

is concave, where α_{k} are nonegative numbers with $\sum_{k} \alpha_{k}=1$. Hint:
(a) Step1. Show the following result first: For a symmetric matrix $A \in \mathbf{R}^{n \times n}$, if A is diagonally dominant (i.e. $\left|A_{i, i}\right| \geq \sum_{j \neq i}\left|A_{j, i}\right|$, for $i=1, \ldots, n$) and if $A_{i, i}>0$ for $i=1, \ldots, n$, then A is positive semidefinite.
(b) Step2. Compute the Hessian of $f(x)$ and show that it is negative semidefinite.

