ELEG5481 Signal Processing Optimization Techniques
 Tutorial 4

Feb. 24, 2013

Q1. Cone of polynomials nonngegative on $[0,1]$. Let K be defined as

$$
K=\left\{c \in \mathbf{R}^{n} \mid c_{1}+c_{2} t+\ldots+c_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\},
$$

i.e., K is the cone of (coefficients of) polynomials of degree $n-1$ that are nonnegative on the interval $[0,1]$. Show that K is a proper cone.

Q2. Show by definition that the function $f(x)=\|A x-b\|$ is convex.

Q3. Show by the first order condition that the function $f(x)=1 /\left(x_{1} x_{2}\right)$ with domain \mathbf{R}_{++}^{2} is convex.

Q4. Show by using the second order condition that the function $f(x, t)=-\log \left(t^{2}-x^{T} x\right)$ is convex in the domain $\left\{(x, t) \in \mathbf{R}^{n} \times \mathbf{R} \mid t>\|x\|_{2}\right\}$.

