ELEG5481 Signal Processing Optimization Techniques Tutorial 3

Feb. 18, 2013

Review on Convexity preserving operations and generalized inequality

Convexity preserving operations:

- Intersection of convex sets: $S=\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex if S_{α} is convex, where \mathcal{A} is an arbitrary index sets.
- Image under affine mapping: Let $f(x)=A x+b$ be an affine function. Then $\{f(x) \mid x \in C\}$ is convex if C is convex.
- Inverse image under affine mapping: Let $f(x)=A x+b$ be an affine function. $\{x \mid f(x) \in C\}$ is convex if C is convex.

A convex cone K is a proper cone if

- K is closed (the boundary of K is in K)
- K is solid (has nonempty interior)
- K is pointed $(x \in K$ and $x \in-K$ imply $x=0)$.

Example:

- Nonnegative orthant $K=\mathbf{R}_{+}^{n}$
- $\operatorname{SOC} K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}$
- PSD cone $K=\left\{X \in \mathbf{S}^{+} \mid X \succeq \mathbf{0}\right\}$

Generalized inequality defined by a proper cone K :

$$
\begin{aligned}
& x \preceq_{K} y \Longleftrightarrow y-x \in K \\
& x \prec_{K} y \Longleftrightarrow y-x \in \operatorname{int} K
\end{aligned}
$$

We say that $x \in S$ is the minimum element of S if for any element $y \in S$ we have $x \preceq_{K} y$. Loosely speaking, this means that x is the smallest element in S.

We say that $x \in S$ is a minimal element of S if for any element $y \in S$ we have $y \preceq_{K} x$ only when $y=x$. Loosely speaking, this means that nobody in S (except x itself) is smaller than or equal to x.

Note that we may have neither $x \preceq_{K} y$ nor $y \preceq_{K} x$, i.e. x is not comparable to y. Hence nobody in S smaller than or equal to x does not means that x is the smallest.

Q1. Cone of polynomials nonngegative on $[0,1]$. Let K be defined as

$$
K=\left\{c \in \mathbf{R}^{n} \mid c_{1}+c_{2} t+\ldots+c_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\},
$$

i.e., K is the cone of (coefficients of) polynomials of degree $n-1$ that are nonnegative on the interval $[0,1]$. Show that K is a proper cone.

Q2. A set C in \mathbf{R}^{m} is convex if and only if every convex combination of vectors from C again is a vector from C, i.e. $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$ is in C, where $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0$, and $x_{i} \in C$.

Q3. Show that the convex hull of a set S is the intersection of all convex sets that contain S.

Q4. What are the interiors the following sets
(a) $C=\left\{x \mid a^{T} x=b\right\}$, where $a \neq 0$.
(b) $C=\left\{x \mid a^{T} x \leq b\right\}$, where $a \neq 0$.
(c) $C=\left\{x \mid x^{T} x=1\right\}$.
(d) $C=\left\{x \mid x^{T} x \leq 1\right\}$.

