ELEG5481 Signal Processing Optimization Techniques Tutorial 2

Feb. 3, 2013

Q1. Let $A=U \Sigma V^{H}$ be a SVD of matrix $A \in \mathbf{C}^{n \times n}$. Show that the problem $\max \{\mathfrak{R}\{\operatorname{tr} A W\} \mid W \in$ $\mathbf{C}^{n \times n}$ is unitary $\}$ has the solution $W=V U^{H}$, and the value of the maximum is $\sum_{i=1}^{n} \sigma_{i}$.

Q2. If A is Hermitian, show that there exists a solution x^{\star} that is optimal to the following two the optimization problems
(a) $v_{1}=\max _{x^{H} x=1} f_{1}(x)=x^{H} A x$.
(b) $v_{2}=\max _{x \neq 0} f_{2}(x)=\frac{x^{H} A x}{x^{H} x}$.

Q3. Prove that for $p \geq 2$,

$$
\|x\|_{2} \leq n^{-\frac{2-p}{2 p}}\|x\|_{p}
$$

by showing that
(a) The inequality above is true if the following equation is true

$$
\begin{equation*}
n^{\frac{2-p}{2}}=\min _{\substack{\|x\|_{2}=1 \\ x_{j} \geq 0, j=1, \ldots, n}}\|x\|_{p}^{p} \tag{1}
\end{equation*}
$$

(b) Show that (1) is true for $n=2$.
(c) Show that (1) is true by induction, i.e. assuming that (1) is true for $n=i-1$, show that (1) is true for $n=i$.

