ELEG5481 Signal Processing Optimization Techniques Tutorial 11

Apr. 15, 2013

Q1. Consider the following problem.

$$\min_{x} \quad \|x - y\|_{2}^{2}$$

s.t. $x \ge a, \ c - b^{T} x \ge 0.$

where $y \in \mathbf{R}^n$, $a, b \in \mathbf{R}^n_+$, and $c \in \mathbf{R}_{++}$ are given data. We assume the problem is strictly feasible.

- (a) Write down the KKT conditions.
- (b) Let x^* denote the primal optimal solution and σ^* denote the dual optimal solution associated with the constraint $c b^T x \ge 0$. From the KKT conditions, derive the relationship between x^* and σ^* .
- (c) Devise a fast algorithm to find the primal and dual optimal solutions.