ELEG5481 Signal Processing Optimization Techniques Tutorial 1

Jan. 24, 2013

Q1. Let x and y be two vector in \mathbf{R}^{n}, and $y \neq 0$. Show that x can be decomposed uniquely in the form of $x=x_{\perp}+x_{\|}$, where $x_{\|}=c y$ for some c, and $x_{\perp}^{T} y=0$. Moreover, $\left\|x_{\|}\right\|_{2}^{2}+\left\|x_{\perp}\right\|_{2}^{2}=\|x\|_{2}^{2}$.

Q2. Prove the following inequalities:
(a) Cauchy-Schwartz inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2}
$$

where the equality holds if and only if $x=c y$ or $y=c x$ for some c.
(b) Hölder inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q},
$$

where $1 / p+1 / q=1, p \geq 1$ and $q \geq 1$.

Q3. Prove the following functions are norms:
(a) $f(x)=\|x\|_{\infty}$.
(b) $f(z)=\|z\|_{*}=\sup \left\{z^{T} x \mid\|x\| \leq 1\right\}$ where $\|\cdot\|$ is a norm on \mathbb{R}^{n}.

Q4. Prove the function $f(x)=\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ with $0<p<1$ is not a norm.

Q5. Prove the following statements
(a) If \mathcal{S} is a nonempty subspace in \mathbf{R}^{n}, then $\mathcal{S}=\mathcal{R}(A)$ for some matrix A.
(b) For any $A \in \mathbf{R}^{m \times n}, \mathcal{N}(A)=\mathcal{R}\left(A^{T}\right)^{\perp}$, where $\mathcal{R}\left(A^{T}\right)^{\perp}$ is the orthogonal complement of the range space spanned by A^{T}.

