ELEG5481 Signal Processing Optimization Techniques Tutorial 1

Jan. 24, 2013

Q1. Let x and y be two vector in \mathbb{R}^n , and $y \neq 0$. Show that x can be decomposed uniquely in the form of $x = x_{\perp} + x_{\parallel}$, where $x_{\parallel} = cy$ for some c, and $x_{\perp}^T y = 0$. Moreover, $||x_{\parallel}||_2^2 + ||x_{\perp}||_2^2 = ||x||_2^2$.

Q2. Prove the following inequalities:

(a) Cauchy-Schwartz inequality:

 $|x^T y| \le ||x||_2 ||y||_2,$

where the equality holds if and only if x = cy or y = cx for some c.

(b) Hölder inequality:

$$|x^T y| \le ||x||_p ||y||_q,$$

where 1/p + 1/q = 1, $p \ge 1$ and $q \ge 1$.

Q3. Prove the following functions are norms: (a) $f(x) = ||x||_{\infty}$.

(b) $f(z) = ||z||_* = \sup\{z^T x \mid ||x|| \le 1\}$ where $||\cdot||$ is a norm on \mathbb{R}^n .

Q4. Prove the function $f(x) = ||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ with 0 is not a norm.

Q5. Prove the following statements

- (a) If S is a nonempty subspace in \mathbf{R}^n , then $S = \mathcal{R}(A)$ for some matrix A.
- (b) For any $A \in \mathbf{R}^{m \times n}$, $\mathcal{N}(A) = \mathcal{R}(A^T)^{\perp}$, where $\mathcal{R}(A^T)^{\perp}$ is the orthogonal complement of the range space spanned by A^T .