ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 6

Mar. 11, 2013

Q1. Consider the following problem.

$$
\begin{array}{rl}
\min _{x_{1}, x_{2}} & f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \geq 1 \\
& x_{1}+3 x_{2} \geq 1 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{array}
$$

(a) Sketch the feasible set and find the optimal solution.
(b) Use the optimality condition to verify the obtained solution is optimal.

Solution:

(a) The blue region in the following figure is the feasible set. The red line is $x_{1}+x_{2}=c$. It can be seen that to minimize the objective function, we need to find the smallest c such that the red line can intersect the feasible set. The minimum c can be found when the red line intersects the point $\left(\frac{1}{5}, \frac{2}{5}\right)$.

(b) To verify that $x^{\star}=\left(\frac{2}{5}, \frac{1}{5}\right)$ is an optimal solution, we need to show that

$$
\nabla f^{T}\left(x^{\star}\right)\left(x-x^{\star}\right) \geq 0 \text { for all feasible } x
$$

Indeed, for any feasible x, we have

$$
\nabla f\left(x^{\star}\right)^{T}\left(x-x^{\star}\right)=\left(x_{1}-\frac{2}{5}\right)+\left(x_{2}-\frac{1}{5}\right)=\frac{2}{5}\left(2 x_{1}+x_{2}\right)+\frac{1}{5}\left(x_{1}+3 x_{2}\right)-\frac{3}{5} \geq 0
$$

Q2. Consider the following three problems, where $a_{i} \in \mathbf{R}^{n}, i=1, \ldots, m, b \in \mathbf{R}^{m}$, and $M>0$ are given data.

1. The robust least-squares problem

$$
\min _{x} \sum_{i=1}^{m} \phi\left(a_{i}^{T} x-b_{i}\right),
$$

where $x \in \mathbf{R}^{n}$, and $\phi: \mathbf{R} \rightarrow \mathbf{R}$ is defined as

$$
\phi(u)= \begin{cases}u^{2}, & |u| \leq M \\ M(2|u|-M), & |u|>M\end{cases}
$$

2. The least-squares problem with variable weights

$$
\begin{array}{ll}
\min _{x, w} & \sum_{i=1}^{m} f\left(a_{i}^{T} x-b_{i}, w_{i}\right) \\
\text { s.t. } & w \geq 0,
\end{array}
$$

where $x \in \mathbf{R}^{n}$, and $f: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ is defined as

$$
f(u, w)=u^{2} /(w+1)+M^{2} w .
$$

3. The quadratic program

$$
\min _{x} \sum_{i=1}^{m} g\left(a_{i}^{T} x-b\right)
$$

where $g(u)$ is defined as

$$
\begin{aligned}
g(u)=\min _{s, t} & s^{2}+2 M t \\
\text { s.t. } & |u| \leq s+t \\
& 0 \leq s \leq M \\
& t \geq 0
\end{aligned}
$$

Show the following results.
(a) Show that problem (1) and problem (2) are equivalent by showing that

$$
\phi(u)=\min _{w \geq 0} f(u, w) .
$$

(b) Show that problem (1) and problem (3) are equivalent by showing that

$$
\phi(u)=g(u) .
$$

Solution:

(a) To find the minimum of $f(u, w)$ over $w \geq 0$, we compute the gradient of $f(u, w)$ with respect to w. Indeed, we have

$$
\frac{\partial f}{\partial w}=-\frac{u^{2}}{(w+1)^{2}}+M^{2}
$$

We can see that if $|u|>M$, then $f(u, w)$ decreases in the region $w \in\left[0, \frac{|u|}{M}-1\right]$ and increases in the region $\left(\frac{|u|}{M}-1, \infty\right)$. Therefore, $f(u, w)$ attains the minimum $M(2|u|-M)$ at $w=\frac{|u|}{M}-1$. On the other hand, if $|u| \leq M$, then $f(u, w)$ increases in the region $w \in[0, \infty)$. Therefore, $f(u, w)$ attains minimum u^{2} at $w=0$.
(b) First observe that at optimum, s and t must satisfies $|u|=s+t$. Otherwise, we can reduce s or t a little so that feasibility is maintained and the objective value is reduced. Therefore substituting $t=|u|-s$ back, we can eliminate t and the problem is equivalent to

$$
\begin{aligned}
g(u)=\min _{s, t} & s^{2}+2 M(|u|-s) \\
\text { s.t. } & 0 \leq s \leq M \\
& s \leq|u|
\end{aligned}
$$

Note that the objective function is quadratic, and attains the minimum at $s=M$ if the problem is unconstrained. Therefore, when $M<|u|, g(u)=M^{2}+2 M(|u|-M)=M(2|u|-M)$. When $M \geq|u|, g(u)=|u|^{2}$.

