ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 4

Feb. 24, 2013

Q1. Cone of polynomials nonngegative on $[0,1]$. Let K be defined as

$$
K=\left\{c \in \mathbf{R}^{n} \mid c_{1}+c_{2} t+\ldots+c_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

i.e., K is the cone of (coefficients of) polynomials of degree $n-1$ that are nonnegative on the interval $[0,1]$. Show that K is a proper cone.

Solution: For convenience we define $f_{c}(t)=c_{1}+c_{2} t+\ldots+c_{n} t^{n-1}$.
K is a cone. If $c \in K$, then $f_{c}(t) \geq 0$ for $t \in[0,1]$, which implies $f_{a c}(t) \geq 0$ for $t \in[0,1]$ for all $a \geq 0$. Therefor $a c$ belongs to K.
K is convex. Suppose c and c^{\prime} belong to K, and $0 \leq \lambda \leq 1$. Then we have

$$
f_{\lambda c+(1-\lambda) c^{\prime}}(t)=f_{\lambda c}(t)+f_{(1-\lambda) c^{\prime}}(t)
$$

As $f_{c}(t)$ and $f_{c^{\prime}}(t)$ are nonnegative on $t \in[0,1]$, so are $f_{\lambda c}(t)$ and $f_{(1-\lambda) c^{\prime}}(t)$. Therefore $f_{\lambda c+(1-\lambda) c^{\prime}}(t)$ is nonnegative on $t \in[0,1]$ as well.

We can also consider K as the intersection of half spaces, as we can write K as

$$
K=\bigcap_{t \in[0,1]}\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\} .
$$

For a given $t,\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\}$ is just a half space. Intersection of closed sets is closed.
K is pointed. We need to show that $f_{c}(t) \geq 0$ and $f_{-c}(t) \geq 0$ on $t \in[0,1]$ implies $c=0$. To show that $c_{1}=0$, observe that $f_{c}(0)=c_{1} \geq 0$ and $f_{-c}(0)=-c_{1} \geq 0$. Therefore $c_{1}=0$. Thus, we can write $f_{c}(t)$ in the form of $f_{c}(t)=t f_{c, 1}(t)$, where

$$
f_{c, 1}(t)=c_{2}+c_{3} t+\ldots+c_{n} t^{n-2}
$$

Since $f_{c}(t) \geq 0$ on $t \in[0,1]$, we have $f_{c, 1}(t) \geq 0$ on $t \in[0,1]$ as well. Thus $f_{c, 1}(0)=c_{2} \geq 0$. Similarly, we have $c_{2} \leq 0$. Therefore $c_{2}=0$. Continuing this process, we conclude that $c=0$.
K has nonempty interior. We show that the all-one vector 1 lies in the interior of K. We show this by showing that for c with $\|c-1\| \leq 1$ belongs to K, i.e. $f_{c}(t) \geq 0$ on $t \in[0,1]$. As $\|c-1\| \leq 1$, we have $c \succeq 0$, therefore $f_{c}(t) \geq 0$ on $t \in[0,1]$.
K is closed. We can write K as

$$
K=\bigcap_{t \in[0,1]}\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\} .
$$

For a given $t,\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\}$ is just a closed half space. By the result from mathematical analysis that arbitrary intersection of closed sets is closed, we conclude that K is closed.

Q2. Show by definition that the function $f(x)=\|A x-b\|$ is convex.

Solution:

$f(\theta x+(1-\theta) y)=\|\theta(A x-b)+(1-\theta)(A y-b)\| \leq \theta\|A x-b\|+(1-\theta)\|A y-b\|=\theta f(x)+(1-\theta) f(y)$

Q3. Show by the first order condition that the function $f(x)=1 /\left(x_{1} x_{2}\right)$ with domain \mathbf{R}_{++}^{2} is convex.
Solution: We have

$$
\nabla f=-\left[\begin{array}{c}
\frac{1}{x_{1}^{2} x_{2}} \\
\frac{1}{x_{1} x_{2}^{2}}
\end{array}\right] .
$$

We need to show that $f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$ is true for all x and y. Indeed we have

$$
f(y)-f(x)-\nabla f(x)^{T}(y-x)=\left(\frac{1}{y_{1} y_{2}}+\frac{y_{1}}{x_{1}^{2} x_{2}}+\frac{y_{2}}{x_{1} x_{2}^{2}}\right)-\frac{3}{x_{1} x_{2}} \geq 0
$$

where the inequality is due to the arithmetic mean- geometric mean inequality for $x \in \mathbf{R}_{+}^{n}$,

$$
\frac{\sum_{i=1}^{n} x_{i}}{n} \geq\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}
$$

Q4. Show by using the second order condition that the function $f(x, t)=-\log \left(t^{2}-x^{T} x\right)$ is convex in the domain $\left\{(x, t) \in \mathbf{R}^{n} \times \mathbf{R} \mid t>\|x\|_{2}\right\}$.

Solution:

$$
\begin{gathered}
\frac{\partial f}{\partial x_{i}}=\frac{2 x_{i}}{t^{2}-x^{T} x} \\
\frac{\partial f}{\partial t}=-\frac{2 t}{t^{2}-x^{T} x} \\
\frac{\partial^{2} f}{\partial x_{i}^{2}}=\frac{2}{\left(t^{2}-x^{T} x\right)^{2}}\left(2 x_{i}^{2}+t^{2}-x^{T} x\right) \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{2}{\left(t^{2}-x^{T} x\right)^{2}}\left(2 x_{i} x_{j}\right) \\
\frac{\partial^{2} f}{\partial t \partial x_{i}}=\frac{2}{\left(t^{2}-x^{T} x\right)^{2}}\left(-2 x_{i} t\right) \\
\frac{\partial^{2} f}{\partial t^{2}}=\frac{2}{\left(t^{2}-x^{T} x\right)^{2}}\left(t^{2}+x^{T} x\right)
\end{gathered}
$$

Therefore, we have

$$
\begin{aligned}
\nabla^{2} f(x, t) & =\frac{2}{\left(t^{2}-x^{T} x\right)^{2}}\left[\begin{array}{cc}
2 x x^{T}+\left(t^{2}-x^{T} x\right) I & -2 t x \\
-2 t x^{T} & t^{2}+x^{T} x
\end{array}\right] \\
& =\frac{2}{\left(t^{2}-x^{T} x\right)^{2}}\left(2\left[\begin{array}{cc}
x x^{T} & -t x \\
-t x^{T} & t^{2}
\end{array}\right]+\left[\begin{array}{cc}
\left(t^{2}-x^{T} x\right) I & \\
& -\left(t^{2}-x^{T} x\right)
\end{array}\right]\right)
\end{aligned}
$$

We now verify that $\nabla^{2} f(x, t)$ is PSD. Let $(y, s) \in \mathbf{R}^{n} \times \mathbf{R}$. Then,

$$
\begin{equation*}
\frac{\left(t^{2}-x^{T} x\right)^{2}}{2}\left(y^{T}, s\right) \nabla^{2} f(x, t)\left(y^{T}, s\right)^{T}=2\left(t s-x^{T} y\right)^{2}-\left(t^{2}-x^{T} x\right)\left(s^{2}-y^{T} y\right) \tag{1}
\end{equation*}
$$

For (y, s) that satisfies $s^{2} \leq y^{T} y,(1)$ is greater than zero. Next, let us assume that $s^{2}>y^{T} y$. We have

$$
\left|t s-x^{T} y\right| \geq|t s|-\left|x^{T} y\right| \geq|t s|-\|x\|\|y\| \geq 0
$$

Therefore
$(1) \geq 2(|t s|-\|x\|\|y\|)^{2}-\left(t^{2}-x^{T} x\right)\left(s^{2}-y^{T} y\right)=(|t s|-\|x\|\|y\|)^{2}+(|t|\|y\|-|s|\|x\|)^{2} \geq 0$.

