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Q1. Cone of polynomials nonngegative on [0,1]. Let K be defined as

K = {c ∈ Rn | c1 + c2t+ . . .+ cnt
n−1 ≥ 0 for t ∈ [0, 1]},

i.e., K is the cone of (coefficients of) polynomials of degree n − 1 that are nonnegative on the interval

[0, 1]. Show that K is a proper cone.

Solution: For convenience we define fc(t) = c1 + c2t+ . . .+ cnt
n−1.

K is a cone. If c ∈ K, then fc(t) ≥ 0 for t ∈ [0, 1], which implies fac(t) ≥ 0 for t ∈ [0, 1] for all

a ≥ 0. Therefor ac belongs to K.

K is convex. Suppose c and c′ belong to K, and 0 ≤ λ ≤ 1. Then we have

fλc+(1−λ)c′(t) = fλc(t) + f(1−λ)c′(t)

As fc(t) and fc′(t) are nonnegative on t ∈ [0, 1], so are fλc(t) and f(1−λ)c′(t). Therefore fλc+(1−λ)c′(t)

is nonnegative on t ∈ [0, 1] as well.

We can also consider K as the intersection of half spaces, as we can write K as

K =
∩

t∈[0,1]

{c ∈ Rn|fc(t) ≥ 0}.

For a given t, {c ∈ Rn|fc(t) ≥ 0} is just a half space. Intersection of closed sets is closed.

K is pointed. We need to show that fc(t) ≥ 0 and f−c(t) ≥ 0 on t ∈ [0, 1] implies c = 0. To show

that c1 = 0, observe that fc(0) = c1 ≥ 0 and f−c(0) = −c1 ≥ 0. Therefore c1 = 0. Thus, we can

write fc(t) in the form of fc(t) = tfc,1(t), where

fc,1(t) = c2 + c3t+ . . .+ cnt
n−2.

Since fc(t) ≥ 0 on t ∈ [0, 1], we have fc,1(t) ≥ 0 on t ∈ [0, 1] as well. Thus fc,1(0) = c2 ≥ 0. Similarly,

we have c2 ≤ 0. Therefore c2 = 0. Continuing this process, we conclude that c = 0.

K has nonempty interior. We show that the all-one vector 1 lies in the interior of K. We show

this by showing that for c with ∥c− 1∥ ≤ 1 belongs to K, i.e. fc(t) ≥ 0 on t ∈ [0, 1]. As ∥c− 1∥ ≤ 1,

we have c ≽ 0, therefore fc(t) ≥ 0 on t ∈ [0, 1].

K is closed. We can write K as

K =
∩

t∈[0,1]

{c ∈ Rn|fc(t) ≥ 0}.

For a given t, {c ∈ Rn|fc(t) ≥ 0} is just a closed half space. By the result from mathematical

analysis that arbitrary intersection of closed sets is closed, we conclude that K is closed.

Q2. Show by definition that the function f(x) = ∥Ax− b∥ is convex.

Solution:

f(θx+(1−θ)y) = ∥θ(Ax− b)+(1−θ)(Ay− b)∥ ≤ θ∥Ax− b∥+(1−θ)∥Ay− b∥ = θf(x)+(1−θ)f(y)
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Q3. Show by the first order condition that the function f(x) = 1/(x1x2) with domain R2
++ is convex.

Solution: We have

∇f = −

[
1

x2
1x2

1
x1x2

2

]
.

We need to show that f(y) ≥ f(x) +∇f(x)T (y − x) is true for all x and y. Indeed we have

f(y)− f(x)−∇f(x)T (y − x) =

(
1

y1y2
+

y1
x2
1x2

+
y2

x1x2
2

)
− 3

x1x2
≥ 0

where the inequality is due to the arithmetic mean- geometric mean inequality for x ∈ Rn
+,

∑n
i=1 xi

n
≥

(
n∏

i=1

xi

) 1
n

Q4. Show by using the second order condition that the function f(x, t) = − log(t2 − xTx) is convex in

the domain {(x, t) ∈ Rn ×R | t > ∥x∥2}.

Solution:

∂f

∂xi
=

2xi

t2 − xTx
∂f

∂t
= − 2t

t2 − xTx
,

∂2f

∂x2
i

=
2

(t2 − xTx)2
(2x2

i + t2 − xTx)

∂2f

∂xi∂xj
=

2

(t2 − xTx)2
(2xixj)

∂2f

∂t∂xi
=

2

(t2 − xTx)2
(−2xit)

∂2f

∂t2
=

2

(t2 − xTx)2
(t2 + xTx)

Therefore, we have

∇2f(x, t) =
2

(t2 − xTx)2

[
2xxT + (t2 − xTx)I −2tx

−2txT t2 + xTx

]
=

2

(t2 − xTx)2

(
2

[
xxT −tx

−txT t2

]
+

[
(t2 − xTx)I

−(t2 − xTx)

])
.

We now verify that ∇2f(x, t) is PSD. Let (y, s) ∈ Rn ×R. Then,

(t2 − xTx)2

2
(yT , s)∇2f(x, t)(yT , s)T = 2(ts− xT y)2 − (t2 − xTx)(s2 − yT y) (1)

For (y, s) that satisfies s2 ≤ yT y, (1) is greater than zero. Next, let us assume that s2 > yT y. We

have

|ts− xT y| ≥ |ts| − |xT y| ≥ |ts| − ∥x∥∥y∥ ≥ 0

Therefore

(1) ≥ 2(|ts| − ∥x∥∥y∥)2 − (t2 − xTx)(s2 − yT y) = (|ts| − ∥x∥∥y∥)2 + (|t|∥y∥ − |s|∥x∥)2 ≥ 0.
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