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Review on Convexity preserving operations and generalized inequality

Convexity preserving operations:

• Intersection of convex sets: S =
∩

α∈A Sα is convex if Sα is convex, where A is an arbitrary

index sets.

• Image under affine mapping: Let f(x) = Ax+ b be an affine function. Then {f(x) | x ∈ C}
is convex if C is convex.

• Inverse image under affine mapping: Let f(x) = Ax+b be an affine function. {x | f(x) ∈ C}
is convex if C is convex.

A convex cone K is a proper cone if

• K is closed (the boundary of K is in K)

• K is solid ( has nonempty interior)

• K is pointed ( x ∈ K and x ∈ −K imply x = 0).

Example:

• Nonnegative orthant K = Rn
+

• SOC K = {(x, t) | ∥x∥2 ≤ t}

• PSD cone K = {X ∈ S+ | X ≽ 0}

Generalized inequality defined by a proper cone K:

x ≼K y ⇐⇒ y − x ∈ K

x ≺K y ⇐⇒ y − x ∈ intK

We say that x ∈ S is the minimum element of S if for any element y ∈ S we have x ≼K y. Loosely

speaking, this means that x is the smallest element in S.

We say that x ∈ S is a minimal element of S if for any element y ∈ S we have y ≼K x only when

y = x. Loosely speaking, this means that nobody in S ( except x itself) is smaller than or equal to

x.

Note that we may have neither x ≼K y nor y ≼K x, i.e. x is not comparable to y. Hence nobody

in S smaller than or equal to x does not means that x is the smallest.
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Q1. Cone of polynomials nonngegative on [0,1]. Let K be defined as

K = {c ∈ Rn | c1 + c2t+ . . .+ cnt
n−1 ≥ 0 for t ∈ [0, 1]},

i.e., K is the cone of (coefficients of) polynomials of degree n − 1 that are nonnegative on the interval

[0, 1]. Show that K is a proper cone.

Solution: For convenience we define fc(t) = c1 + c2t+ . . .+ cnt
n−1.

K is a cone. If c ∈ K, then fc(t) ≥ 0 for t ∈ [0, 1], which implies fac(t) ≥ 0 for t ∈ [0, 1] for all

a ≥ 0. Therefor ac belongs to K.

K is convex. Suppose c and c′ belong to K, and 0 ≤ λ ≤ 1. Then we have

fλc+(1−λ)c′(t) = fλc(t) + f(1−λ)c′(t)

As fc(t) and fc′(t) are nonnegative on t ∈ [0, 1], so are fλc(t) and f(1−λ)c′(t). Therefore fλc+(1−λ)c′(t)

is nonnegative on t ∈ [0, 1] as well.

We can also consider K as the intersection of half spaces, as we can write K as

K =
∩

t∈[0,1]

{c ∈ Rn|fc(t) ≥ 0}.

For a given t, {c ∈ Rn|fc(t) ≥ 0} is just a half space. Intersection of closed sets is closed.

K is pointed. We need to show that fc(t) ≥ 0 and f−c(t) ≥ 0 on t ∈ [0, 1] implies c = 0. To show

that c1 = 0, observe that fc(0) = c1 ≥ 0 and f−c(0) = −c1 ≥ 0. Therefore c1 = 0. Thus, we can

write fc(t) in the form of fc(t) = tfc,1(t), where

fc,1(t) = c2 + c3t+ . . .+ cnt
n−2.

Since fc(t) ≥ 0 on t ∈ [0, 1], we have fc,1(t) ≥ 0 on t ∈ [0, 1] as well. Thus fc,1(0) = c2 ≥ 0. Similarly,

we have c2 ≤ 0. Therefore c2 = 0. Continuing this process, we conclude that c = 0.

K has nonempty interior. We show that the all-one vector 1 lies in the interior of K. We show

this by showing that for c with ∥c− 1∥ ≤ 1 belongs to K, i.e. fc(t) ≥ 0 on t ∈ [0, 1]. As ∥c− 1∥ ≤ 1,

we have c ≽ 0, therefore fc(t) ≥ 0 on t ∈ [0, 1].

K is closed. We can write K as

K =
∩

t∈[0,1]

{c ∈ Rn|fc(t) ≥ 0}.

For a given t, {c ∈ Rn|fc(t) ≥ 0} is just a closed half space. By the result from mathematical

analysis that arbitrary intersection of closed sets is closed, we conclude that K is closed.

Q2. A set C in Rm is convex if and only if every convex combination of vectors from C again is a vector

from C, i.e. x =
∑n

i=1 λixi is in C, where
∑n

i=1 λi = 1, λi ≥ 0, and xi ∈ C.

Solution: If every convex combination of vectors from C is a vector from C, then the convex

combination of two vectors from C is a vector from C. This is just the definition of convex set.

Conversely, we need to show that if C is convex then x =
∑n

i=1 λixi is in C, where
∑n

i=1 λi = 1,

λi ≥ 0, and xi ∈ C. We show this by induction. For n = 2, this is obviously true as this is the

definition of convex set. Assuming this is true for n = k, we need to show that it is true for n = k+1.

For n = k + 1, x can be written as

x = λk+1xk+1 + (

k∑
i=1

λixi).
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If λk+1 = 0, then x is a convex combination of k points, and thus belongs to C. If λk+1 = 1, then

x = xk+1 belongs to C. If 0 < λk+1 < 1, we have

x = λk+1xk+1 + (1− λk+1)x̃,

where

x̃ =
k∑

i=1

λi

(1− λk+1)
xi.

Note that
∑k

i=1
λi

(1−λk+1)
= 1, hence x̃ belongs to C. As x is a convex combination of xk+1 and x̃, x

belongs to C.

Q3. Show that the convex hull of a set S is the intersection of all convex sets that contain S.

Solution: Let D denote a convex set that contains S. Then the intersection of all convex sets that

contain S can be denoted by

C =
∩

D convex
S⊂D

D.

Then for any x ∈ coS, x is a convex combination of some points {xi}ni=1 in S. Then {xi}ni=1

belongs to S, and thus D. Because D is convex and x is a convex combination of {xi}ni=1 that belong

to D, x belongs to D.

Conversely, since coS is convex and contain S, by definition of C, C is a subset of coS.

Q4. What are the interiors of the following sets

(a) C = {x | aTx = b}, where a ̸= 0.

(b) C = {x | aTx ≤ b}, where a ̸= 0.

(c) C = {x | xTx = 1}.
(d) C = {x | xTx ≤ 1}.

Solution:

(a) intC = ∅.
(b) intC = {x | aTx < b}
(c) intC = ∅.
(d) intC = {x | xTx < 1}.
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