ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 3

Feb. 18, 2013

Review on Convexity preserving operations and generalized inequality

Convexity preserving operations:

- Intersection of convex sets: $S=\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex if S_{α} is convex, where \mathcal{A} is an arbitrary index sets.
- Image under affine mapping: Let $f(x)=A x+b$ be an affine function. Then $\{f(x) \mid x \in C\}$ is convex if C is convex.
- Inverse image under affine mapping: Let $f(x)=A x+b$ be an affine function. $\{x \mid f(x) \in C\}$ is convex if C is convex.

A convex cone K is a proper cone if

- K is closed (the boundary of K is in K)
- K is solid (has nonempty interior)
- K is pointed $(x \in K$ and $x \in-K$ imply $x=0)$.

Example:

- Nonnegative orthant $K=\mathbf{R}_{+}^{n}$
- $\operatorname{SOC} K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}$
- PSD cone $K=\left\{X \in \mathbf{S}^{+} \mid X \succeq \mathbf{0}\right\}$

Generalized inequality defined by a proper cone K :

$$
\begin{aligned}
& x \preceq_{K} y \Longleftrightarrow y-x \in K \\
& x \prec_{K} y \Longleftrightarrow y-x \in \operatorname{int} K
\end{aligned}
$$

We say that $x \in S$ is the minimum element of S if for any element $y \in S$ we have $x \preceq_{K} y$. Loosely speaking, this means that x is the smallest element in S.

We say that $x \in S$ is a minimal element of S if for any element $y \in S$ we have $y \preceq_{K} x$ only when $y=x$. Loosely speaking, this means that nobody in S (except x itself) is smaller than or equal to x.

Note that we may have neither $x \preceq_{K} y$ nor $y \preceq_{K} x$, i.e. x is not comparable to y. Hence nobody in S smaller than or equal to x does not means that x is the smallest.

Q1. Cone of polynomials nonngegative on $[0,1]$. Let K be defined as

$$
K=\left\{c \in \mathbf{R}^{n} \mid c_{1}+c_{2} t+\ldots+c_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

i.e., K is the cone of (coefficients of) polynomials of degree $n-1$ that are nonnegative on the interval $[0,1]$. Show that K is a proper cone.

Solution: For convenience we define $f_{c}(t)=c_{1}+c_{2} t+\ldots+c_{n} t^{n-1}$.
K is a cone. If $c \in K$, then $f_{c}(t) \geq 0$ for $t \in[0,1]$, which implies $f_{a c}(t) \geq 0$ for $t \in[0,1]$ for all $a \geq 0$. Therefor $a c$ belongs to K.
K is convex. Suppose c and c^{\prime} belong to K, and $0 \leq \lambda \leq 1$. Then we have

$$
f_{\lambda c+(1-\lambda) c^{\prime}}(t)=f_{\lambda c}(t)+f_{(1-\lambda) c^{\prime}}(t)
$$

As $f_{c}(t)$ and $f_{c^{\prime}}(t)$ are nonnegative on $t \in[0,1]$, so are $f_{\lambda c}(t)$ and $f_{(1-\lambda) c^{\prime}}(t)$. Therefore $f_{\lambda c+(1-\lambda) c^{\prime}}(t)$ is nonnegative on $t \in[0,1]$ as well.

We can also consider K as the intersection of half spaces, as we can write K as

$$
K=\bigcap_{t \in[0,1]}\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\} .
$$

For a given $t,\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\}$ is just a half space. Intersection of closed sets is closed.
K is pointed. We need to show that $f_{c}(t) \geq 0$ and $f_{-c}(t) \geq 0$ on $t \in[0,1]$ implies $c=0$. To show that $c_{1}=0$, observe that $f_{c}(0)=c_{1} \geq 0$ and $f_{-c}(0)=-c_{1} \geq 0$. Therefore $c_{1}=0$. Thus, we can write $f_{c}(t)$ in the form of $f_{c}(t)=t f_{c, 1}(t)$, where

$$
f_{c, 1}(t)=c_{2}+c_{3} t+\ldots+c_{n} t^{n-2}
$$

Since $f_{c}(t) \geq 0$ on $t \in[0,1]$, we have $f_{c, 1}(t) \geq 0$ on $t \in[0,1]$ as well. Thus $f_{c, 1}(0)=c_{2} \geq 0$. Similarly, we have $c_{2} \leq 0$. Therefore $c_{2}=0$. Continuing this process, we conclude that $c=0$.
K has nonempty interior. We show that the all-one vector 1 lies in the interior of K. We show this by showing that for c with $\|c-1\| \leq 1$ belongs to K, i.e. $f_{c}(t) \geq 0$ on $t \in[0,1]$. As $\|c-1\| \leq 1$, we have $c \succeq 0$, therefore $f_{c}(t) \geq 0$ on $t \in[0,1]$.
K is closed. We can write K as

$$
K=\bigcap_{t \in[0,1]}\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\}
$$

For a given $t,\left\{c \in \mathbf{R}^{n} \mid f_{c}(t) \geq 0\right\}$ is just a closed half space. By the result from mathematical analysis that arbitrary intersection of closed sets is closed, we conclude that K is closed.

Q2. A set C in \mathbf{R}^{m} is convex if and only if every convex combination of vectors from C again is a vector from C, i.e. $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$ is in C, where $\sum_{i=1}^{n} \lambda_{i}=1, \lambda_{i} \geq 0$, and $x_{i} \in C$.

Solution: If every convex combination of vectors from C is a vector from C, then the convex combination of two vectors from C is a vector from C. This is just the definition of convex set.

Conversely, we need to show that if C is convex then $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$ is in C, where $\sum_{i=1}^{n} \lambda_{i}=1$, $\lambda_{i} \geq 0$, and $x_{i} \in C$. We show this by induction. For $n=2$, this is obviously true as this is the definition of convex set. Assuming this is true for $n=k$, we need to show that it is true for $n=k+1$. For $n=k+1, x$ can be written as

$$
x=\lambda_{k+1} x_{k+1}+\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right) .
$$

If $\lambda_{k+1}=0$, then x is a convex combination of k points, and thus belongs to C. If $\lambda_{k+1}=1$, then $x=x_{k+1}$ belongs to C. If $0<\lambda_{k+1}<1$, we have

$$
x=\lambda_{k+1} x_{k+1}+\left(1-\lambda_{k+1}\right) \tilde{x},
$$

where

$$
\tilde{x}=\sum_{i=1}^{k} \frac{\lambda_{i}}{\left(1-\lambda_{k+1}\right)} x_{i} .
$$

Note that $\sum_{i=1}^{k} \frac{\lambda_{i}}{\left(1-\lambda_{k+1}\right)}=1$, hence \tilde{x} belongs to C. As x is a convex combination of x_{k+1} and \tilde{x}, x belongs to C.

Q3. Show that the convex hull of a set S is the intersection of all convex sets that contain S.

Solution: Let D denote a convex set that contains S. Then the intersection of all convex sets that contain S can be denoted by

$$
C=\bigcap_{\substack{D \text { convex } \\ S \subset D}} D .
$$

Then for any $x \in \cos , x$ is a convex combination of some points $\left\{x_{i}\right\}_{i=1}^{n}$ in \mathcal{S}. Then $\left\{x_{i}\right\}_{i=1}^{n}$ belongs to \mathcal{S}, and thus D. Because D is convex and x is a convex combination of $\left\{x_{i}\right\}_{i=1}^{n}$ that belong to D, x belongs to D.

Conversely, since $\operatorname{co} S$ is convex and contain S, by definition of C, C is a subset of $\operatorname{co} S$.

Q4. What are the interiors of the following sets
(a) $C=\left\{x \mid a^{T} x=b\right\}$, where $a \neq 0$.
(b) $C=\left\{x \mid a^{T} x \leq b\right\}$, where $a \neq 0$.
(c) $C=\left\{x \mid x^{T} x=1\right\}$.
(d) $C=\left\{x \mid x^{T} x \leq 1\right\}$.

Solution:

(a) $\operatorname{int} C=\emptyset$.
(b) $\operatorname{int} C=\left\{x \mid a^{T} x<b\right\}$
(c) $\operatorname{int} C=\emptyset$.
(d) $\operatorname{int} C=\left\{x \mid x^{T} x<1\right\}$.

