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Q1. Let A = UΣV H be a SVD of matrix A ∈ Cn×n. Show that the problem max{R{trAW} | W ∈
Cn×n is unitary} has the solution W = V UH , and the value of the maximum is

∑n
i=1 σi.

Solution: Let Q = V HWU . Then Q is unitary i.f.f W is unitary. We have that

max{R{trAW} | W ∈ Cn×n is unitary}

is the same as

max{R{trΣQ} | Q ∈ Cn×n is unitary}.

The objective function can be written as
∑n

i=1 σiR{Qii}. Since Q is unitary, we have |Qii| ≤ 1.

Therefore

max
Q is unitary

{
n∑

i=1

σiR{Qii}

}
≤

n∑
i=1

σi.

Equality holds if Qii = 1 for i = 1, . . . , n. This can be achieved by Q = I. Hence W = V UH is a

solution of the original problem.

Q2. If A is Hermitian, show that there exists a solution x⋆ that is optimal to the following two the

optimization problems

(a) v1 = maxxHx=1 f1(x) = xHAx.

(b) v2 = maxx ̸=0 f2(x) =
xHAx
xHx

.

Solution: If we show that v1 = v2, then an optimal solution x⋆ of the first problem satisfy v1 =

f1(x
⋆), and f(x⋆) ≤ v2. But f1(x

⋆) = f2(x
⋆). This implies that x⋆ is also optimal to the second

problem. We now show that v1 = v2. Obviously v1 ≤ v2, because

v2 = max
x ̸=0

xHAx

xHx
≥ max

x ̸=0,xHx=1

xHAx

xHx
= max

xHx=1

xHAx

xHx
= max

xHx=1
xHAx = v1.

We also have v2 ≤ v1, since for all x ̸= 0, we have f2(x) = f1(x/∥x∥2) ≤ v1.

Q3. Prove that for p ≥ 2,

∥x∥2 ≤ n− 2−p
2p ∥x∥p,

by showing that

(a) The inequality above is true if the following equation is true

n
2−p
2 = min

∥x∥2=1
xj≥0,j=1,...,n

∥x∥pp. (1)

(b) Show that (1) is true for n = 2.

(c) Assuming that (1) is true for n = i− 1, show that (1) is true for n = i.
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Solution:

(a) We prove that the inequality is true if the following equation is true

n
2−p
2p = min

∥x∥2=1
∥x∥p. (2)

If this equation is true, then

n
2−p
2p ∥x∥2 ≤ ∥x∥p, ∀ x with ∥x∥2 = 1.

This implies

n
2−p
2p ∥x∥2 ≤ ∥x∥p, ∀ x.

The reason is that for x ̸= 0, we have

n
2−p
2p

∥∥∥∥ x

∥x∥2

∥∥∥∥
2

≤
∥∥∥∥ x

∥x2∥

∥∥∥∥
p

(b) For n = 2, (1) can be written as

min xp
1 + xp

2

s.t. x2
1 + x2

2 = 1.

which can be simplified as
min f2(x2) = xp

2 + (1− x2
2)

p
2

s.t. 0 ≤ x2 ≤ 1.

This problem is to find the minimum value of f2(x2) in the range of 0 ≤ x2 ≤ 1. This can be

done by observing the derivative

f ′
2(x2) = px2(x

p−2
2 − (1− x2

2)
p
2−1)

It can be seen that

f ′
2(x2)


< 0, 0 ≤ x2 < 1√

2
,

= 0, x1 = 1√
2
,

> 0, 1√
2
< x2 ≤ 1.

This means that f2(x2) is decreasing in the range of 0 ≤ x1 ≤ 1√
2
, and is increasing in the

range 1√
2
≤ x2 ≤ 1. Therefore the minimum value of f(x2) is achieved at x2 = 1√

2
, which yields

f2(
1√
2
) = 2−

p
2+1.

(c) Assuming that (1) is true for n = i − 1, we now show that it is true for n = i. For n = i, (1)

can be written as

min xp
i +

i−1∑
j=1

xp
j

s.t. x2
i +

i−1∑
j=1

x2
j = 1. xi ≥ 0, xj ≥ 0 for j = 1, . . . , i− 1.

We need two steps to solve the problem. In the first step, we fix 0 ≤ xi ≤ 1, and find the best

x1, . . . , xi−1. In the second step, we will find the best xi. Suppose now xi has been fixed, the

problem we are considering is
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min
i−1∑
j=1

xp
i

s.t.

i−1∑
j=1

x2
j = 1− x2

i ,

xj ≥ 0 for j = 1, . . . , i− 1.

If xi = 1, the result of the optimization is zero. If 0 ≤ xi < 1, after the change of variable

x̃j =
1√
1−x2

i

xj , the problem is turned to

min (1− x2
i )

p
2

i−1∑
j=1

x̃p
j

s.t.
i−1∑
j=1

x̃2
j = 1,

x̃j ≥ 0 for j = 1, . . . , i− 1,

which is just (1 − x2
i )

p
2 (i − 1)−

p
2+1, by using the assumption that (1) is just (i − 1)−

p
2+1 for

n = i− 1.

Now, as the second step, we need to solve

min f(xi) , xp
i + (1− x2

i )
p
2 (i− 1)−

p
2+1

s.t. 0 ≤ xi ≤ 1.

This again can be solved by observing the derivative, which can be shown to be

f ′
i(xi) = pxi(x

p−2
i − (i− 1)1−

p
2 (1− x2

i )
p
2−1).

It can be seen that

f ′
2(x1)


< 0, 0 ≤ xi <

1√
i
,

= 0, xi =
1√
i
,

> 0, 1√
2
< xi ≤ 1.

Therefore, xi =
1√
i
yields the minimum value fi(

1√
i
) = i−

p
2+1.
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