ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 2

Feb. 3, 2013

Q1. Let $A=U \Sigma V^{H}$ be a SVD of matrix $A \in \mathbf{C}^{n \times n}$. Show that the problem $\max \{\mathfrak{R}\{\operatorname{tr} A W\} \mid W \in$ $\mathbf{C}^{n \times n}$ is unitary\} has the solution $W=V U^{H}$, and the value of the maximum is $\sum_{i=1}^{n} \sigma_{i}$.

Solution: Let $Q=V^{H} W U$. Then Q is unitary i.f.f W is unitary. We have that

$$
\max \left\{\Re\{\operatorname{tr} A W\} \mid W \in \mathbf{C}^{n \times n} \text { is unitary }\right\}
$$

is the same as

$$
\max \left\{\mathfrak{R}\{\operatorname{tr} \Sigma Q\} \mid Q \in \mathbf{C}^{n \times n} \text { is unitary }\right\} .
$$

 Therefore

$$
\max _{\text {is unitary }}\left\{\sum_{i=1}^{n} \sigma_{i} \mathfrak{R}\left\{Q_{i i}\right\}\right\} \leq \sum_{i=1}^{n} \sigma_{i} .
$$

Equality holds if $Q_{i i}=1$ for $i=1, \ldots, n$. This can be achieved by $Q=I$. Hence $W=V U^{H}$ is a solution of the original problem.

Q2. If A is Hermitian, show that there exists a solution x^{\star} that is optimal to the following two the optimization problems
(a) $v_{1}=\max _{x^{H} x=1} f_{1}(x)=x^{H} A x$.
(b) $v_{2}=\max _{x \neq 0} f_{2}(x)=\frac{x^{H} A x}{x^{H} x}$.

Solution: If we show that $v_{1}=v_{2}$, then an optimal solution x^{\star} of the first problem satisfy $v_{1}=$ $f_{1}\left(x^{\star}\right)$, and $f\left(x^{\star}\right) \leq v_{2}$. But $f_{1}\left(x^{\star}\right)=f_{2}\left(x^{\star}\right)$. This implies that x^{\star} is also optimal to the second problem. We now show that $v_{1}=v_{2}$. Obviously $v_{1} \leq v_{2}$, because

$$
v_{2}=\max _{x \neq 0} \frac{x^{H} A x}{x^{H} x} \geq \max _{x \neq 0, x^{H} x=1} \frac{x^{H} A x}{x^{H} x}=\max _{x^{H} x=1} \frac{x^{H} A x}{x^{H} x}=\max _{x^{H} x=1} x^{H} A x=v_{1} .
$$

We also have $v_{2} \leq v_{1}$, since for all $x \neq 0$, we have $f_{2}(x)=f_{1}\left(x /\|x\|_{2}\right) \leq v_{1}$.

Q3. Prove that for $p \geq 2$,

$$
\|x\|_{2} \leq n^{-\frac{2-p}{2 p}}\|x\|_{p}
$$

by showing that
(a) The inequality above is true if the following equation is true

$$
\begin{equation*}
n^{\frac{2-p}{2}}=\min _{\substack{\| \| \|_{2}=1 \\ x_{j} \geq 0, j=1, \ldots, n}}\|x\|_{p}^{p} \tag{1}
\end{equation*}
$$

(b) Show that (1) is true for $n=2$.
(c) Assuming that (1) is true for $n=i-1$, show that (1) is true for $n=i$.

Solution:

(a) We prove that the inequality is true if the following equation is true

$$
\begin{equation*}
n^{\frac{2-p}{2 p}}=\min _{\|x\|_{2}=1}\|x\|_{p} . \tag{2}
\end{equation*}
$$

If this equation is true, then

$$
n^{\frac{2-p}{2 p}}\|x\|_{2} \leq\|x\|_{p}, \quad \forall x \text { with }\|x\|_{2}=1 .
$$

This implies

$$
n^{\frac{2-p}{2 p}}\|x\|_{2} \leq\|x\|_{p}, \quad \forall x .
$$

The reason is that for $x \neq 0$, we have

$$
n^{\frac{2-p}{2 p}}\left\|\frac{x}{\|x\|_{2}}\right\|_{2} \leq\left\|\frac{x}{\left\|x_{2}\right\|}\right\|_{p}
$$

(b) For $n=2$, (1) can be written as

$$
\begin{aligned}
\min & x_{1}^{p}+x_{2}^{p} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}=1 .
\end{aligned}
$$

which can be simplified as

$$
\begin{array}{cl}
\min & f_{2}\left(x_{2}\right)=x_{2}^{p}+\left(1-x_{2}^{2}\right)^{\frac{p}{2}} \\
\text { s.t. } & 0 \leq x_{2} \leq 1 .
\end{array}
$$

This problem is to find the minimum value of $f_{2}\left(x_{2}\right)$ in the range of $0 \leq x_{2} \leq 1$. This can be done by observing the derivative

$$
f_{2}^{\prime}\left(x_{2}\right)=p x_{2}\left(x_{2}^{p-2}-\left(1-x_{2}^{2}\right)^{\frac{p}{2}-1}\right)
$$

It can be seen that

$$
f_{2}^{\prime}\left(x_{2}\right) \begin{cases}<0, & 0 \leq x_{2}<\frac{1}{\sqrt{2}} \\ =0, & x_{1}=\frac{1}{\sqrt{2}}, \\ >0, & \frac{1}{\sqrt{2}}<x_{2} \leq 1 .\end{cases}
$$

This means that $f_{2}\left(x_{2}\right)$ is decreasing in the range of $0 \leq x_{1} \leq \frac{1}{\sqrt{2}}$, and is increasing in the range $\frac{1}{\sqrt{2}} \leq x_{2} \leq 1$. Therefore the minimum value of $f\left(x_{2}\right)$ is achieved at $x_{2}=\frac{1}{\sqrt{2}}$, which yields $f_{2}\left(\frac{1}{\sqrt{2}}\right)=2^{-\frac{p}{2}+1}$.
(c) Assuming that (1) is true for $n=i-1$, we now show that it is true for $n=i$. For $n=i$, (1) can be written as

$$
\begin{array}{ll}
\min & x_{i}^{p}+\sum_{j=1}^{i-1} x_{j}^{p} \\
\text { s.t. } & x_{i}^{2}+\sum_{j=1}^{i-1} x_{j}^{2}=1 . \quad x_{i} \geq 0, \quad x_{j} \geq 0 \text { for } j=1, \ldots, i-1 .
\end{array}
$$

We need two steps to solve the problem. In the first step, we fix $0 \leq x_{i} \leq 1$, and find the best x_{1}, \ldots, x_{i-1}. In the second step, we will find the best x_{i}. Suppose now x_{i} has been fixed, the problem we are considering is

$$
\begin{array}{ll}
\min & \sum_{j=1}^{i-1} x_{i}^{p} \\
\text { s.t. } & \sum_{j=1}^{i-1} x_{j}^{2}=1-x_{i}^{2} \\
& x_{j} \geq 0 \text { for } j=1, \ldots, i-1 .
\end{array}
$$

If $x_{i}=1$, the result of the optimization is zero. If $0 \leq x_{i}<1$, after the change of variable $\tilde{x}_{j}=\frac{1}{\sqrt{1-x_{i}^{2}}} x_{j}$, the problem is turned to

$$
\begin{array}{ll}
\min & \left(1-x_{i}^{2}\right)^{\frac{p}{2}} \sum_{j=1}^{i-1} \tilde{x}_{j}^{p} \\
\text { s.t. } & \sum_{j=1}^{i-1} \tilde{x}_{j}^{2}=1 \\
& \tilde{x}_{j} \geq 0 \text { for } j=1, \ldots, i-1
\end{array}
$$

which is just $\left(1-x_{i}^{2}\right)^{\frac{p}{2}}(i-1)^{-\frac{p}{2}+1}$, by using the assumption that (1) is just $(i-1)^{-\frac{p}{2}+1}$ for $n=i-1$.
Now, as the second step, we need to solve

$$
\begin{array}{cl}
\min & f\left(x_{i}\right) \triangleq x_{i}^{p}+\left(1-x_{i}^{2}\right)^{\frac{p}{2}}(i-1)^{-\frac{p}{2}+1} \\
\text { s.t. } & 0 \leq x_{i} \leq 1
\end{array}
$$

This again can be solved by observing the derivative, which can be shown to be

$$
f_{i}^{\prime}\left(x_{i}\right)=p x_{i}\left(x_{i}^{p-2}-(i-1)^{1-\frac{p}{2}}\left(1-x_{i}^{2}\right)^{\frac{p}{2}-1}\right)
$$

It can be seen that

$$
f_{2}^{\prime}\left(x_{1}\right) \begin{cases}<0, & 0 \leq x_{i}<\frac{1}{\sqrt{\sqrt{i}}} \\ =0, & x_{i}=\frac{1}{\sqrt{\sqrt{i}}} \\ >0, & \frac{1}{\sqrt{2}}<x_{i} \leq 1\end{cases}
$$

Therefore, $x_{i}=\frac{1}{\sqrt{i}}$ yields the minimum value $f_{i}\left(\frac{1}{\sqrt{i}}\right)=i^{-\frac{p}{2}+1}$.

