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Q1. Let A = UXVH be a SVD of matrix A € C™*". Show that the problem max{R{trAW} | W €
C"™*™ is unitary} has the solution W = VU and the value of the maximum is >, 0;.

Solution: Let Q@ = VEWU. Then @ is unitary i.f.f W is unitary. We have that
max{R{trAW} | W e C™*" is unitary}
is the same as
max{R{trXQ} | Q € C"*" is unitary}.
The objective function can be written as >\, 0;R{Q;;}. Since @ is unitary, we have |Q;;| < 1.

Therefore
max { az%{Q“}} S ZO‘Z‘.
i=1 i=1

Q@ is unitary

Equality holds if Q;; = 1 for ¢ = 1,...,n. This can be achieved by Q = I. Hence W = VU¥ is a
solution of the original problem.

Q2. If A is Hermitian, show that there exists a solution z* that is optimal to the following two the
optimization problems
(a) v1 = max,u,_; fi(z) = v Ax.

(b) v2 = max,o f2(r) = ””:TAf-

Solution: If we show that v; = vy, then an optimal solution x* of the first problem satisfy v; =
fi(x®), and f(z*) < vy. But fi(a*) = fa(z*). This implies that z* is also optimal to the second
problem. We now show that v; = vy. Obviously v; < vg, because

ot Ax oH Ax oH Ax

v =max —p— > max 7 = Max —— = max 2 Az = vy.
z#0 T A0, xz=1 T7X zHz=1 "X zHz=1

We also have vy < vy, since for all z # 0, we have fo(z) = fi(z/]|z|2) < v1.

Q3. Prove that for p > 2,

_2-p
2l < n™ 7= |2l

by showing that
(a) The inequality above is true if the following equation is true

n2 = min |z|b. (1)

(b) Show that (1) is true for n = 2.
(c) Assuming that (1) is true for n = ¢ — 1, show that (1) is true for n = i.



Solution:
(a) We prove that the inequality is true if the following equation is true

n% = min ||z, 2)
lzll2=1
If this equation is true, then
2-p .
nw |z < [lzflp, VY a with [zf2 = 1.

This implies
2-p
nw |zlly < flzflp, Vo

The reason is that for = # 0, we have
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For n = 2, (1) can be written as
min 2§ + b
st. x?+a3 =1
which can be simplified as
min  fo(zo) = 25 + (1 —22)%
st. 0<zy <1.
This problem is to find the minimum value of f3(z2) in the range of 0 < zo < 1. This can be
done by observing the derivative

fo(w) = pra(ah ™ — (1 —a3)57")

It can be seen that
<0, 0<ay < %,
fé(xz) = 07 T = %a

>0, %<{L‘2§1.

This means that fs(x2) is decreasing in the range of 0 < z; < %, and is increasing in the

range % < 29 < 1. Therefore the minimum value of f(x2) is achieved at xo = \%, which yields

fa(g5) =275
Assuming that (1) is true for n = ¢ — 1, we now show that it is true for n = i. For n =i, (1)
can be written as

i—1
min xf—l—Zm?
=1
—1
st af+ Y at=1. 2,20, 2;>0forj=1,....i—1
j=1

We need two steps to solve the problem. In the first step, we fix 0 < x; < 1, and find the best
T1,...,T;—1. In the second step, we will find the best x;. Suppose now x; has been fixed, the
problem we are considering is




i—1
min Z ggf

j=1

i—1

st. D #i=1-d,

=1
ijOfij:l,--.,i—l,

If z; = 1, the result of the optimization is zero. If 0 < z; < 1, after the change of variable

~ 1 :
;= ﬁxj’ the problem is turned to

i—1
. N >
min (1 —2z7)2 E "
j=1
i1
} : ~2
s.t. ;I;j E 17
Jj=1

z;>0forj=1,...,i—1,

which is just (1 — 2?)%(i — 1)~ 2T, by using the assumption that (1) is just (i — 1)~%*! for
n=1—1.
Now, as the second step, we need to solve

min  f(z;) 2P + (1 —2?)5(i—1)"2H!

st. 0<g; <1.

This again can be solved by observing the derivative, which can be shown to be
filws) = pri(a? ™ — (i~ 1) E (1 D) EY),
It can be seen that
<0, 0<x; < 1
fo(x1) =0, @i = ﬁ,
> Oa L < x;




