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Q1. Consider the following problem.

min
x

‖x− y‖22

s.t. x ≥ a, c− bTx ≥ 0.

where y ∈ Rn, a, b ∈ Rn
+, and c ∈ R++ are given data. We assume the problem is strictly feasible.

(a) Write down the KKT conditions.

(b) Let x⋆ denote the primal optimal solution and σ⋆ denote the dual optimal solution associated with

the constraint c− bTx ≥ 0. From the KKT conditions, derive the relationship between x⋆ and σ⋆.

(c) Devise a fast algorithm to find the primal and dual optimal solutions.

Solution:

(a) Let λ and σ denote the dual variables associated with constraints x ≥ a and c − bTx ≥ 0,

respectively. The KKT conditions are

x ≥ a, (1)

c− bTx ≥ 0, (2)

λ ≥ 0, (3)

σ ≥ 0, (4)

λi(xi − ai) = 0, ∀ i, (5)

σ(c− bTx) = 0, (6)

2(x− y)− λ+ σb = 0. (7)

(b) From Eq.(6), we can see that

x = (y − σ
2
b) + 1

2
λ.

Let us investigate the relationship between x and σ.

Case 1: Suppose yi −
σ
2
bi > ai. As λi ≥ 0, we have xi > ai. From Eq.(5), we have λi = 0.

Thus xi = yi −
σ
2
bi.

Case 2: Suppose yi −
σ
2
bi = ai. Then we have xi = ai +

1

2
λi. From Eq.(5), we have λ2

i = 0.

Therefore λi = 0 and xi = yi −
σ
2
bi.

Case 3: Suppose yi −
σ
2
bi < ai. Then 0 ≤ xi − ai = (yi −

σ
2
bi) +

1

2
λi − ai <

1

2
λi. From Eq.(5),

we have xi = ai and λi = 2(ai − yi −
σ
2
bi).

Summarizing these three cases, we have

xi = max{yi −
σ
2
bi, ai}, i = 1, . . . , n.

and λi = max{2yi − σbi, 2ai} − (2yi − σbi).

(c) The KKT conditions reduce to

c− bTx ≥ 0, (8)

σ ≥ 0, (9)

σ(c− bTx) = 0, (10)

xi = max{yi −
σ
2
bi, ai}, i = 1, . . . , n. (11)

To solve this equations, let us first consider the three cases.
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Case 1: Suppose that c−
∑n

i=1
bi max{yi, ai} > 0. We have σ = 0, as if σ > 0, then

c− bTx = c−
n
∑

i=1

bi max{yi −
σ
2
bi, ai} ≥ c−

n
∑

i=1

bi max{yi, ai} > 0,

which violate Eq.(10). We also have

xi = max{yi, ai}, i = 1, . . . , n.

Case 2: Suppose that c −
∑n

i=1
bi max{yi, ai} = 0. Then it can be easily seen that σ = 0 and

xi = max{yi, ai}, i = 1, . . . , n is a solution.

Case 3: Suppose c−
∑n

i=1
bi max{yi, ai} < 0. We must have σ > 0. For otherwise,

0 ≤ c− bTx = c−
n
∑

i=1

bi max{yi, ai} < 0,

which is a contradiction. Therefore, we have c = bTx, or

c =

n
∑

i=1

bi max{yi −
σ
2
bi, ai}.

Define f(σ) =
∑n

i=1
bi max{yi −

σ
2
bi, ai} with domain σ ≥ 0. We want to solve the equation

f(σ) = c for σ. Define fi(σ) = bi max{yi −
σ
2
bi, ai}. Then we have

fi(σ) =

{

yibi −
σ
2
b2i , if σ ≤ σi

biai, if σ > σi,

where σi = 2(yi − ai)/bi. Because fi(σ) is decreasing, by definition of f(x), so is f(x). To solve

for f(x) = c, we can simply use bisection.

A better method exists by observing that fi(σ) is piece-wise, and so is f(x). Without loss of

generality, we assume that σ1 ≤ σ2 . . . ≤ σn. By definition of f(σ) we have, when σi ≤ σ ≤ σi+1

( we define σ0 = 0 and σn+1 = ∞),

f(σ) =

n
∑

j=1

fj(σ) =

i
∑

j=1

fj(σ) +

n
∑

j=i+1

fj(σ) =

i
∑

j=1

bjaj +

n
∑

j=i+1

(yjbj −
σ
2
b2j ) (12)

Our next step is to determine the solution σ⋆ of f(σ) = c lies in which region [σi′ , σi′+1). As

f(σ) is decreasing and σ0 ≤ σ1 ≤, . . . , σn, we can compute f(σi) for i = 1, . . . , n and find out the

region f(σi′) ≤ c < f(σi′+1). This implies that σi′ ≤ σ⋆ < σi′+1. Within this region [σi′ , σi′+1),

we have

f(σ) =

n
∑

j=1

fj(σ) =

i′
∑

j=1

fj(σ) +

n
∑

j=i′+1

fj(σ) =

i′
∑

j=1

bjaj +

n
∑

j=i′+1

(yjbj −
σ
2
b2j ). (13)

The solution x⋆ can be easily computed as f(σ) is just linear now.
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