ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 11

Apr. 15, 2013

Q1. Consider the following problem.

$$\min_{x} \quad \|x - y\|_{2}^{2}$$

s.t. $x \ge a, \ c - b^{T} x \ge 0.$

where $y \in \mathbf{R}^n$, $a, b \in \mathbf{R}^n_+$, and $c \in \mathbf{R}_{++}$ are given data. We assume the problem is strictly feasible.

- (a) Write down the KKT conditions.
- (b) Let x^* denote the primal optimal solution and σ^* denote the dual optimal solution associated with the constraint $c b^T x \ge 0$. From the KKT conditions, derive the relationship between x^* and σ^* .
- (c) Devise a fast algorithm to find the primal and dual optimal solutions.

Solution:

(a) Let λ and σ denote the dual variables associated with constraints $x \ge a$ and $c - b^T x \ge 0$, respectively. The KKT conditions are

c

 $x \ge a,\tag{1}$

$$-b^T x \ge 0, \tag{2}$$

$$\lambda \ge 0, \tag{3}$$

$$\sigma \ge 0,\tag{4}$$

$$\lambda_i(x_i - a_i) = 0, \ \forall \ i, \tag{5}$$

$$\sigma(c - b^T x) = 0, \tag{6}$$

$$2(x-y) - \lambda + \sigma b = 0. \tag{7}$$

(b) From Eq.(6), we can see that

$$x = \left(y - \frac{\sigma}{2}b\right) + \frac{1}{2}\lambda.$$

Let us investigate the relationship between x and σ .

Case 1: Suppose $y_i - \frac{\sigma}{2}b_i > a_i$. As $\lambda_i \ge 0$, we have $x_i > a_i$. From Eq.(5), we have $\lambda_i = 0$. Thus $x_i = y_i - \frac{\sigma}{2}b_i$. **Case 2:** Suppose $y_i - \frac{\sigma}{2}b_i = a_i$. Then we have $x_i = a_i + \frac{1}{2}\lambda_i$. From Eq.(5), we have $\lambda_i^2 = 0$.

Therefore $\lambda_i = 0$ and $x_i = y_i - \frac{\sigma}{2}b_i$. **Case 3:** Suppose $y_i - \frac{\sigma}{2}b_i < a_i$. Then $0 \le x_i - a_i = (y_i - \frac{\sigma}{2}b_i) + \frac{1}{2}\lambda_i - a_i < \frac{1}{2}\lambda_i$. From Eq.(5), we have $x_i = a_i$ and $\lambda_i = 2(a_i - y_i - \frac{\sigma}{2}b_i)$.

Summarizing these three cases, we have

$$x_i = \max\{y_i - \frac{\sigma}{2}b_i, a_i\}, \quad i = 1, \dots, n.$$

and $\lambda_i = \max\{2y_i - \sigma b_i, 2a_i\} - (2y_i - \sigma b_i).$ (c) The KKT conditions reduce to

 $c - b^T x \ge 0, \tag{8}$

$$\sigma \ge 0,\tag{9}$$

$$\sigma(c - b^T x) = 0, \tag{10}$$

$$x_i = \max\{y_i - \frac{\sigma}{2}b_i, a_i\}, \quad i = 1, \dots, n.$$
(11)

To solve this equations, let us first consider the three cases.

Case 1: Suppose that $c - \sum_{i=1}^{n} b_i \max\{y_i, a_i\} > 0$. We have $\sigma = 0$, as if $\sigma > 0$, then

$$c - b^T x = c - \sum_{i=1}^n b_i \max\{y_i - \frac{\sigma}{2}b_i, a_i\} \ge c - \sum_{i=1}^n b_i \max\{y_i, a_i\} > 0,$$

which violate Eq.(10). We also have

$$x_i = \max\{y_i, a_i\}, i = 1, \dots, n.$$

Case 2: Suppose that $c - \sum_{i=1}^{n} b_i \max\{y_i, a_i\} = 0$. Then it can be easily seen that $\sigma = 0$ and $x_i = \max\{y_i, a_i\}, i = 1, \dots, n$ is a solution. **Case 3:** Suppose $c - \sum_{i=1}^n b_i \max\{y_i, a_i\} < 0$. We must have $\sigma > 0$. For otherwise,

$$0 \le c - b^T x = c - \sum_{i=1}^n b_i \max\{y_i, a_i\} < 0,$$

which is a contradiction. Therefore, we have $c = b^T x$, or

$$c = \sum_{i=1}^{n} b_i \max\{y_i - \frac{\sigma}{2}b_i, a_i\}$$

Define $f(\sigma) = \sum_{i=1}^{n} b_i \max\{y_i - \frac{\sigma}{2}b_i, a_i\}$ with domain $\sigma \ge 0$. We want to solve the equation $f(\sigma) = c$ for σ . Define $f_i(\sigma) = b_i \max\{y_i - \frac{\sigma}{2}b_i, a_i\}$. Then we have

$$f_i(\sigma) = \begin{cases} y_i b_i - \frac{\sigma}{2} b_i^2, & \text{if } \sigma \le \sigma_i \\ b_i a_i, & \text{if } \sigma > \sigma_i. \end{cases}$$

where $\sigma_i = 2(y_i - a_i)/b_i$. Because $f_i(\sigma)$ is decreasing, by definition of f(x), so is f(x). To solve for f(x) = c, we can simply use bisection.

A better method exists by observing that $f_i(\sigma)$ is piece-wise, and so is f(x). Without loss of generality, we assume that $\sigma_1 \leq \sigma_2 \ldots \leq \sigma_n$. By definition of $f(\sigma)$ we have, when $\sigma_i \leq \sigma \leq \sigma_{i+1}$ (we define $\sigma_0 = 0$ and $\sigma_{n+1} = \infty$),

$$f(\sigma) = \sum_{j=1}^{n} f_j(\sigma) = \sum_{j=1}^{i} f_j(\sigma) + \sum_{j=i+1}^{n} f_j(\sigma) = \sum_{j=1}^{i} b_j a_j + \sum_{j=i+1}^{n} (y_j b_j - \frac{\sigma}{2} b_j^2)$$
(12)

Our next step is to determine the solution σ^* of $f(\sigma) = c$ lies in which region $[\sigma_{i'}, \sigma_{i'+1})$. As $f(\sigma)$ is decreasing and $\sigma_0 \leq \sigma_1 \leq \ldots, \sigma_n$, we can compute $f(\sigma_i)$ for $i = 1, \ldots, n$ and find out the region $f(\sigma_{i'}) \leq c < f(\sigma_{i'+1})$. This implies that $\sigma_{i'} \leq \sigma^* < \sigma_{i'+1}$. Within this region $[\sigma_{i'}, \sigma_{i'+1})$, we have

$$f(\sigma) = \sum_{j=1}^{n} f_j(\sigma) = \sum_{j=1}^{i'} f_j(\sigma) + \sum_{j=i'+1}^{n} f_j(\sigma) = \sum_{j=1}^{i'} b_j a_j + \sum_{j=i'+1}^{n} (y_j b_j - \frac{\sigma}{2} b_j^2).$$
(13)

The solution x^* can be easily computed as $f(\sigma)$ is just linear now.