ELEG5481 Signal Processing Optimization Techniques Tutorial Solution 1

Jan. 24, 2013

Q1. Let x and y be two vector in \mathbf{R}^{n}, and $y \neq 0$. Show that x can be decomposed uniquely in the form of $x=x_{\perp}+x_{\|}$, where $x_{\|}=c y$ for some c, and $x_{\perp}^{T} y=0$. Moreover, $\left\|x_{\|}\right\|_{2}^{2}+\left\|x_{\perp}\right\|_{2}^{2}=\|x\|_{2}^{2}$.

Solution: $(x-c y)^{T} y=0$ implies that $c=\frac{x^{T} y}{\|y\|_{2}^{2}}$. Other things are easy.

Q2. Prove the following inequalities:
(a) Cauchy-Schwartz inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2}
$$

where the equality holds if and only if $x=c y$ for some c.
(b) Hölder inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q}
$$

where $1 / p+1 / q=1, p \geq 1$ and $q \geq 1$.

Solution:

(a) Assume that $y \neq 0$; for otherwise, the inequality holds trivially. By Q1, we have

$$
\left|x^{T} y\right|=\left|\left(x_{\perp}+x_{\|}\right)^{T} y\right|=\left|x_{\|}^{T} y\right|=|c|\|y\|_{2}^{2}=\left\|x_{\|}\right\|_{2}\|y\| \leq\|x\|_{2}\|y\|_{2}
$$

where $c=\frac{x^{T} y}{\|y\|_{2}^{2}}, x_{\|}=c y, x_{\perp}=x-x_{\|}$. The equality holds if and only if $\left\|x_{\|}\right\|=\|x\|$. This is the same as $\left\|x_{\perp}\right\|=0$, which is equivalent to $x_{\perp}=0$ by the property of norm. Therefore, equality holds if and only if $x=x_{\|}=c y$.
(b) The proof is taken from Stephen Boyd's textbook. Assume neither x nor y is zero; for otherwise, the inequality holds true trivially. We will need the following inequality:

$$
a^{\theta} b^{1-\theta} \leq \theta a+(1-\theta) b
$$

where $a, b \geq 0$ and $0 \leq \theta \leq 1$. By setting

$$
a=\frac{\left|x_{i}\right|^{p}}{\sum_{j=1}^{n}\left|x_{j}\right|^{p}}, b=\frac{\left|y_{i}\right|^{q}}{\sum_{j=1}^{n}\left|y_{j}\right|^{q}}, \quad \theta=1 / p
$$

yields

$$
\left(\frac{\left|x_{i}\right|^{p}}{\sum_{j=1}^{n}\left|x_{j}\right|^{p}}\right)^{1 / p}\left(\frac{\left|y_{i}\right|^{q}}{\sum_{j=1}^{n}\left|y_{j}\right|^{q}}\right)^{1 / q} \leq \frac{\left|x_{i}\right|^{p}}{p \sum_{j=1}^{n}\left|x_{j}\right|^{p}}+\frac{\left|y_{i}\right|^{q}}{q \sum_{j=1}^{n}\left|y_{j}\right|^{q}}
$$

Summing over $i=1, \ldots, n$, we have

$$
\left(\frac{\sum_{i=1}^{n}\left|x_{i} y_{i}\right|}{\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}\left(\sum_{j=1}^{n}\left|y_{j}\right|^{q}\right)^{1 / q}}\right) \leq \frac{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}{p \sum_{j=1}^{n}\left|x_{j}\right|^{p}}+\frac{\sum_{i=1}^{n}\left|y_{i}\right|^{q}}{q \sum_{j=1}^{n}\left|y_{j}\right|^{q}},
$$

which is the same as

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\frac{1}{p}+\frac{1}{q}\right)\|x\|_{p}\|y\|_{q}
$$

Q3. Prove the following functions are norms:
(a) $f(x)=\|x\|_{\infty}$.
(b) $f(z)=\|z\|_{*}=\sup \left\{z^{T} x \mid\|x\| \leq 1\right\}$ where $\|\cdot\|$ is a norm on \mathbb{R}^{n}.

Solution:

(a) We only verify the triangular inequality. Others properties are easy. It is true that $f(x+y)=$ $\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right|$ for some index i. We also have $\left|x_{i}\right| \leq f(x)$ and $\left|y_{i}\right| \leq f(y)$. Hence we have $f(x+y) \leq f(x)+f(y)$.
(b) 1. We show $f(z)=0$ i.f.f. $z=0$. We have $f(0)=\sup \{0 \mid\|x\| \leq 1\}=0$. On the other hand, $f(z)=0$ implies $z^{T} x \leq 0$ for all x such that $\|x\| \leq 1$. By setting $x=e_{i} /\left\|e_{i}\right\|$, where e_{i} is a zero vector except the i th entry being one, we have $z_{i} \leq 0$; again by setting $x=-e_{i} /\left\|e_{i}\right\|$, we have $-z_{i} \leq 0$. Therefore $z_{i}=0$. Since this is true for all i, we conclude that $z=0$.
2. We show $f(z) \geq 0$. Assume $z \neq 0$. We have $f(z)=\sup \left\{z^{T} x \mid\|x\| \leq 1\right\}$. By setting $x=z /\|z\|$, we have $f(z) \geq z^{T} z /\|z\|>0$.
3. We show $f(c z)=|c| f(z)$. This is obviously true for $c=0$. For $c>0$, we have $f(c z)=$ $\sup \left\{c z^{T} x \quad \mid \quad\|x\| \leq 1\right\}=c \sup \left\{z^{T} x \quad \mid \quad\|x\| \leq 1\right\}=c f(z)$. For $c<0$, we have $f(c z)=$ $\sup \left\{c z^{T} x \mid \quad\|x\| \leq 1\right\}=\sup \left\{|c| z^{T}(-x) \quad \mid\|-x\| \leq 1\right\}=|c| \sup \left\{z^{T}(-x) \quad \mid \quad\|-x\| \leq 1\right\}=$ $|c| \sup \left\{z^{T} x \mid \quad\|x\| \leq 1\right\}$.
4. We show $f(z+y) \leq f(z)+f(y)$. We have $f(z+y)=\sup \left\{(z+y)^{T} x \mid\|x\| \leq 1\right\} \leq \sup \left\{z^{T} x \mid\right.$ $\|x\| \leq 1\}+\sup \left\{y^{T} x \mid\|x\| \leq 1\right\}=f(z)+f(y)$. Think about why the inequality is true.

Q4. Prove the function $f(x)=\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ with $0<p<1$ is not a norm.

Solution:

The triangular inequality does not hold. For example, $f\left(e_{1}+e_{2}\right)=2^{\frac{1}{p}}>f\left(e_{1}\right)+f\left(e_{2}\right)=2$. Note that even for $0<p<1$ people usually call $\|x\|_{p} p$-norm, though it is not a norm. Sometimes, this is confusing.

Q5. Prove the following statements
(a) If \mathcal{S} is a nonempty subspace in \mathbf{R}^{n}, then $\mathcal{S}=\mathcal{R}(A)$ for some matrix A.
(b) For any $A \in \mathbf{R}^{m \times n}, \mathcal{N}(A)=\mathcal{R}\left(A^{T}\right)^{\perp}$, where $\mathcal{R}\left(A^{T}\right)^{\perp}$ is the orthogonal complement of the range space spanned by A^{T}.

Solution:

(a) If \mathcal{S} is not empty, then there exists some vector $a_{1} \in \mathcal{S}$. Because \mathcal{S} is a subspace, we have $\mathcal{R}\left(\left[a_{1}\right]\right) \subset \mathcal{S}$. If $\mathcal{R}\left(\left[a_{1}\right]\right)=\mathcal{S}$, then we are done; otherwise, there exists a vector a_{2} such that $a_{2} \in \mathcal{S}$ but $a_{2} \notin \mathcal{R}\left(\left[a_{1}\right]\right)$. Then we have $\mathcal{R}\left(\left[a_{1}, a_{2}\right]\right) \subset \mathcal{S}$. Continuing this process, we will find a set of $k<n$ vectors $\left\{a_{i}\right\}_{i=1}^{k}$ such that $\mathcal{R}\left(\left[a_{1}, \ldots, a_{k}\right]\right)=\mathcal{S}$ or a set of n vectors $\left\{a_{i}\right\}_{i=1}^{n}$ such that $\mathcal{R}\left(\left[a_{1}, \ldots, a_{n}\right]\right) \subset \mathcal{S}$. In the former case, we are done by setting $A=\left[a_{1}, \ldots, a_{k}\right]$. In the latter case, indeed we are done as well by setting $A=\left[a_{1}, \ldots, a_{k}\right]$. The reason is that there is no vector a_{n+1} such that $a_{n+1} \in \mathcal{S}$ and $a_{n+1} \notin \mathcal{R}\left(\left[a_{1}, \ldots, a_{n}\right]\right)$, as the way we construct $\left\{a_{i}\right\}_{i=1}^{n}$ makes sure that they are linear independent and there are at most n linear independent vectors in \mathbf{R}^{n}.
(b) If $x \in \mathcal{N}(A)$, then $A x=0$, implying $x^{T} A^{T} y=0$ for all $y \in \mathbf{R}^{n}$. By definition, we have $x \in \mathcal{R}\left(A^{T}\right)^{\perp}$. Conversely, if $x \in \mathcal{R}\left(A^{T}\right)^{\perp}$, then $x^{T} A^{T} y=(A x)^{T} y=0$ for all $y \in \mathbf{R}^{n}$. Setting

$$
y=e_{i}, \text { we have the } i \text { th element of } A x \text { is zero. This is true for all } i . \text { So } A x=0 \text {. }
$$

