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Q1. Let x and y be two vector in Rn, and y ̸= 0. Show that x can be decomposed uniquely in the form

of x = x⊥ + x∥, where x∥ = cy for some c, and xT
⊥y = 0. Moreover, ∥x∥∥22 + ∥x⊥∥22 = ∥x∥22.

Solution: (x− cy)T y = 0 implies that c = xT y
∥y∥2

2
. Other things are easy.

Q2. Prove the following inequalities:

(a) Cauchy-Schwartz inequality:

|xT y| ≤ ∥x∥2∥y∥2,
where the equality holds if and only if x = cy for some c.

(b) Hölder inequality:

|xT y| ≤ ∥x∥p∥y∥q,
where 1/p+ 1/q = 1, p ≥ 1 and q ≥ 1.

Solution:

(a) Assume that y ̸= 0; for otherwise, the inequality holds trivially. By Q1, we have

|xT y| = |(x⊥ + x∥)
T y| = |xT

∥ y| = |c|∥y∥22 = ∥x∥∥2∥y∥ ≤ ∥x∥2∥y∥2,

where c = xT y
∥y∥2

2
, x∥ = cy, x⊥ = x− x∥. The equality holds if and only if ∥x∥∥ = ∥x∥. This is the

same as ∥x⊥∥ = 0, which is equivalent to x⊥ = 0 by the property of norm. Therefore, equality

holds if and only if x = x∥ = cy.

(b) The proof is taken from Stephen Boyd’s textbook. Assume neither x nor y is zero; for otherwise,

the inequality holds true trivially. We will need the following inequality:

aθb1−θ ≤ θa+ (1− θ)b,

where a, b ≥ 0 and 0 ≤ θ ≤ 1. By setting

a =
|xi|p∑n
j=1 |xj |p

, b =
|yi|q∑n
j=1 |yj |q

, θ = 1/p,

yields (
|xi|p∑n
j=1 |xj |p

)1/p(
|yi|q∑n
j=1 |yj |q

)1/q

≤ |xi|p

p
∑n

j=1 |xj |p
+

|yi|q

q
∑n

j=1 |yj |q
.

Summing over i = 1, . . . , n, we have( ∑n
i=1 |xiyi|

(
∑n

j=1 |xj |p)1/p(
∑n

j=1 |yj |q)1/q

)
≤

∑n
i=1 |xi|p

p
∑n

j=1 |xj |p
+

∑n
i=1 |yi|q

q
∑n

j=1 |yj |q
,

which is the same as
n∑

i=1

|xiyi| ≤
(
1

p
+

1

q

)
∥x∥p∥y∥q
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Q3. Prove the following functions are norms:

(a) f(x) = ∥x∥∞.

(b) f(z) = ∥z∥∗ = sup{zTx | ∥x∥ ≤ 1} where ∥ · ∥ is a norm on Rn.

Solution:

(a) We only verify the triangular inequality. Others properties are easy. It is true that f(x+ y) =

|xi + yi| ≤ |xi|+ |yi| for some index i. We also have |xi| ≤ f(x) and |yi| ≤ f(y). Hence we have

f(x+ y) ≤ f(x) + f(y).

(b) 1. We show f(z) = 0 i.f.f. z = 0. We have f(0) = sup{0 | ∥x∥ ≤ 1} = 0. On the other hand,

f(z) = 0 implies zTx ≤ 0 for all x such that ∥x∥ ≤ 1. By setting x = ei/∥ei∥, where ei is a zero

vector except the ith entry being one, we have zi ≤ 0; again by setting x = −ei/∥ei∥, we have

−zi ≤ 0. Therefore zi = 0. Since this is true for all i, we conclude that z = 0.

2. We show f(z) ≥ 0. Assume z ̸= 0. We have f(z) = sup{zTx | ∥x∥ ≤ 1}. By setting

x = z/∥z∥, we have f(z) ≥ zT z/∥z∥ > 0.

3. We show f(cz) = |c|f(z). This is obviously true for c = 0. For c > 0, we have f(cz) =

sup{czTx | ∥x∥ ≤ 1} = c sup{zTx | ∥x∥ ≤ 1} = cf(z). For c < 0, we have f(cz) =

sup{czTx | ∥x∥ ≤ 1} = sup{|c|zT (−x) | ∥ − x∥ ≤ 1} = |c| sup{zT (−x) | ∥ − x∥ ≤ 1} =

|c| sup{zTx | ∥x∥ ≤ 1}.
4. We show f(z+ y) ≤ f(z)+ f(y). We have f(z+ y) = sup{(z+ y)Tx | ∥x∥ ≤ 1} ≤ sup{zTx |
∥x∥ ≤ 1}+ sup{yTx | ∥x∥ ≤ 1} = f(z) + f(y). Think about why the inequality is true.

Q4. Prove the function f(x) = ∥x∥p = (
∑n

i=1 |xi|p)1/p with 0 < p < 1 is not a norm.

Solution:

The triangular inequality does not hold. For example, f(e1+e2) = 2
1
p > f(e1)+f(e2) = 2. Note

that even for 0 < p < 1 people usually call ∥x∥p p-norm, though it is not a norm. Sometimes, this

is confusing.

Q5. Prove the following statements

(a) If S is a nonempty subspace in Rn, then S = R(A) for some matrix A.

(b) For any A ∈ Rm×n, N (A) = R(AT )⊥, where R(AT )⊥ is the orthogonal complement of the range

space spanned by AT .

Solution:

(a) If S is not empty, then there exists some vector a1 ∈ S. Because S is a subspace, we have

R([a1]) ⊂ S. If R([a1]) = S, then we are done; otherwise, there exists a vector a2 such that

a2 ∈ S but a2 /∈ R([a1]). Then we have R([a1, a2]) ⊂ S. Continuing this process, we will find

a set of k < n vectors {ai}ki=1 such that R([a1, . . . , ak]) = S or a set of n vectors {ai}ni=1 such

that R([a1, . . . , an]) ⊂ S. In the former case, we are done by setting A = [a1, . . . , ak]. In the

latter case, indeed we are done as well by setting A = [a1, . . . , ak]. The reason is that there is

no vector an+1 such that an+1 ∈ S and an+1 /∈ R([a1, . . . , an]), as the way we construct {ai}ni=1

makes sure that they are linear independent and there are at most n linear independent vectors

in Rn.

(b) If x ∈ N (A), then Ax = 0, implying xTAT y = 0 for all y ∈ Rn. By definition, we have

x ∈ R(AT )⊥. Conversely, if x ∈ R(AT )⊥, then xTAT y = (Ax)T y = 0 for all y ∈ Rn. Setting
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y = ei, we have the ith element of Ax is zero. This is true for all i. So Ax = 0.
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