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FIR filter

An FIR filter can be represented by its impulse response:

h[n] = h0 + h1δ[n− 1] + . . .+ hL−1δ[n− L+ 1],

� L is the filter length

� h = [h0, . . . , hL−1]T ∈ RL is the filter coefficient

� δ[n] is the delta function
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Equivalently, an FIR filter can be represented by its frequency response:

H(ω) = h0 + h1e
−jω + . . .+ hL−1e

−j(L−1)ω

� j =
√
−1.

� As H(ω + 2π) = H(ω) and H(−ω) = H?(ω), we only need to specify H(ω)
for 0 ≤ ω ≤ π.
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Example

Impulse repsonse h[n]
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Design objective

The objective is to choose h such that H(ω) satisfies some specifications.

Chebychev filter design:

|H(ω)−D(ω)| ≤ E(ω) for all ω ∈ [0, π],

where D(ω) is the desired freq. response, and E(ω) is error tolerance.

Magnitude filter design:

L(ω) ≤ |H(ω)| ≤ U(ω) for all ω ∈ [0, π].

where L(ω) and U(ω) are given lower and upper freq. response bounds.
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Magnitude filter design
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Recall that H(ω) is a linear function of h.

Chebychev filter design:

|H(ω)−D(ω)| ≤ E(ω) for all ω ∈ [0, π],

is convex (in h) for each ω.

Magnitude filter design:

L(ω) ≤ |H(ω)| ≤ U(ω) for all ω ∈ [0, π].

is not convex generally.

Both are semi-infinite problems, i.e. they involve infinite number of
constraints.
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Handinng nonconvexity in magnitude filter design

Magnitude filter design:

min
h

f0(h)

s.t. L(ω) ≤ |H(ω)| ≤ U(ω) for all ω ∈ [0, π].

where f0(h) is convex.

How to handle the nonconvex constraint L(ω) ≤ |H(ω)|?

� Method 1: Impose the linear phase structure on h, i.e.

hn = hL−1−n, n = 0, . . . , L

where the filter order L = 2l + 1 is assumed to be odd.

� Method 2: Optimize the autocorrelation r instead of h, where

rτ =

L−1∑
n=−L+1

hnhn+τ , τ = 0, . . . , L− 1.
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Linear phase filters

Linear phase structure

hn = hL−1−n, n = 0, . . . , L

where the filter order L = 2l + 1 is assumed to be odd.

The freq. response is rewritten as

H(ω) = h0 + h1e
−jω + . . .+ hL−1e

−j(L−1)ω

= e−jlω(2h0 cos lω + 2h1 cos(l − 1)ω + . . .+ hl)

, e−jlωH̃(ω)

Observations:
� The phase is linear in ω, except for jumps of ±π.

� H̃(ω) is real and only depends on h̃ ∈ Rl+1 which collects the first half of
entries of h.

� |H(ω)| = |H̃(ω)|.
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Linear phase filters, cont’d

Linear phase filter design:

min
h̃

f0(h̃)

s.t. L(ω) ≤ |H̃(ω)| ≤ U(ω), ∀ ω ∈ [0, π]

As H̃(ω) is real and linear in h̃, the constraint is convex (with infinite
number of constraints).
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Autocorrelation-based filter design

The autocorrelation r is defined as

rτ =

L−1∑
n=−L+1

hnhn+τ , τ = 0, . . . , L− 1.

Fourier transform of r is

R(ω) =
∑
τ

e−jωτrτ = r0 +
L−1∑
τ=1

2rτ cosωτ = |H(ω)|2.

As R(ω) is linear in r,

L2(ω) ≤ R(ω) ≤ U2(ω)

is convex.
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Autocorrelation-based filter design, cont’d

But not all given r is valid autocorrelation of some h.

Spectral factorization theorem: r is a valid autocorrelation if and only if

R(ω) ≥ 0, ω ∈ [0, π].
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Autocorrelation-based filter design, cont’d

Autocorrelation-based filter design:

min
r

f̃0(r)

s.t. L2(ω) ≤ R(ω) ≤ U2(ω), ∀ ω ∈ [0, π]

R(ω) ≥ 0, ∀ ω ∈ [0, π].

Use spectral factorization to recover h from the solution r?.
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Convex semi-infinite programming

Consider the general semi-infinite problem

min
x

f0(x)

s.t. Ax = b,

fi(x) ≤ 0, i = 1, . . . ,m,

gi(x, ω) ≤ 0, ω ∈ [0, π], i = 1, . . . , p

where we assume fi(x) and gi(x, ω) are convex for every ω.

x may have the meaning of filter coefficients h, or autocorrelaction r, or
other variables.
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Handling semi-infinte constraints

How to handle infinite number of constraint?

Method 1: gi(x, ω) ≤ 0, ∀ ω ∈ [0, π] is the same as

hi(x) , sup
ω∈[0,π]

gi(x, ω) ≤ 0.

hi(x) is convex.

� If hi(x) admits closed-form solution, then we are lucky.

� If hi(x) and a ω̄ such that hi(x) = gi(x, ω̄) can be computed efficiently,
methods for nondifferential optimization can be used.

� If hi(x) admits good approximation, such as one-dimension search on ω, use
the approximation.

� If all fail, consider modifying your specification.
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Method 2: Sampling on frequency, i.e. choose some

0 ≤ ω1 < ω2, < . . . < ωK ≤ π,

and impose the constraints

gi(x, ωk) ≤ −ε, k = 1, . . . ,K.

{ωk}Kk=1 can be chosen uniformly or logarithmically spaced.

ε ≥ 0 is chosen to ensure

gi(x, ω) ≤ 0, ∀ ω ∈ [0, π].

Engineering rule of thumb: K = 15L when using uniform spacing.

This method is an approximation, but flexible, and often yields good results.
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Method 3: The Kalman-Yakubovich-Popov (KYP) lemma can transform
some particular form of semi-infinite constraints to some finite number of
constraints involving linear matrix inequalities.

KYP lemma: Given A,B, and a Hermitian matrix Θ,[
(jωI −A)−1B

I

]H
Θ

[
(jωI −A)−1B

I

]
≺ 0

holds for all ω ∈ R∪ {∞} if and only if there exists a Hermitian matrix P s/t[
A B
I 0

]H [
0 P
P 0

]H [
A B
I 0

]
+ Θ ≺ 0.

There are generalized KYP lemmas which can be very useful.

KYP lemma is an exact transformation, but requires some specific form of
semi-infinite constraints.
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Example: Linear phase high pass filter

Specification:
� Linear phase filter, L = 51.

� Passband [0.8π, π]; Stopband [0, 0.7π].

� Constraint: Passband magnitude 1/1.01 ≤ |H̃(ω)| ≤ 1.01.

� Objective: Minimize stopband magnitude.

Time response h[n]
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Magnitude |H(ω)|
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