Tutorial 10: Application of convex optimization in FIR filter design

Jiaxian Pan

Digital Signal Processing and Speech Technology Laboratory
Department of Electronic Engineering
The Chinese University of Hong Kong

April 10, 2013
An FIR filter can be represented by its impulse response:

\[h[n] = h_0 + h_1 \delta[n - 1] + \ldots + h_{L-1} \delta[n - L + 1], \]

- \(L \) is the filter length
- \(h = [h_0, \ldots, h_{L-1}]^T \in \mathbb{R}^L \) is the filter coefficient
- \(\delta[n] \) is the delta function
Equivalently, an FIR filter can be represented by its frequency response:

\[H(\omega) = h_0 + h_1 e^{-j\omega} + \ldots + h_{L-1} e^{-j(L-1)\omega} \]

\[j = \sqrt{-1}. \]

As \(H(\omega + 2\pi) = H(\omega) \) and \(H(-\omega) = H^*(\omega) \), we only need to specify \(H(\omega) \) for \(0 \leq \omega \leq \pi \).
Example

- Impulse response $h[n]$

- Magnitude $|H(\omega)|$
Design objective

- The objective is to choose \(h \) such that \(H(\omega) \) satisfies some specifications.

- Chebychev filter design:

\[
|H(\omega) - D(\omega)| \leq E(\omega) \text{ for all } \omega \in [0, \pi],
\]

where \(D(\omega) \) is the desired freq. response, and \(E(\omega) \) is error tolerance.

- Magnitude filter design:

\[
L(\omega) \leq |H(\omega)| \leq U(\omega) \text{ for all } \omega \in [0, \pi].
\]

where \(L(\omega) \) and \(U(\omega) \) are given lower and upper freq. response bounds.
Magnitude filter design
• Recall that $H(\omega)$ is a linear function of h.

• Chebychev filter design:

\[|H(\omega) - D(\omega)| \leq E(\omega) \text{ for all } \omega \in [0, \pi], \]

is convex (in h) for each ω.

• Magnitude filter design:

\[L(\omega) \leq |H(\omega)| \leq U(\omega) \text{ for all } \omega \in [0, \pi]. \]

is not convex generally.

• Both are semi-infinite problems, i.e. they involve infinite number of constraints.
Handling nonconvexity in magnitude filter design

- Magnitude filter design:

\[
\begin{align*}
\min_{\mathbf{h}} & \quad f_0(\mathbf{h}) \\
\text{s.t.} & \quad L(\omega) \leq |H(\omega)| \leq U(\omega) \text{ for all } \omega \in [0, \pi].
\end{align*}
\]

where \(f_0(\mathbf{h}) \) is convex.

- How to handle the nonconvex constraint \(L(\omega) \leq |H(\omega)| \)?

 ◦ Method 1: Impose the linear phase structure on \(\mathbf{h} \), i.e.

 \[
 h_n = h_{L-1-n}, \quad n = 0, \ldots, L
 \]

 where the filter order \(L = 2l + 1 \) is assumed to be odd.

 ◦ Method 2: Optimize the autocorrelation \(\mathbf{r} \) instead of \(\mathbf{h} \), where

 \[
 r_\tau = \sum_{n=-L+1}^{L-1} h_n h_{n+\tau}, \quad \tau = 0, \ldots, L - 1.
 \]
Linear phase filters

- Linear phase structure

\[h_n = h_{L-1-n}, \quad n = 0, \ldots, L \]

where the filter order \(L = 2l + 1 \) is assumed to be odd.

- The freq. response is rewritten as

\[
H(\omega) = h_0 + h_1 e^{-j\omega} + \ldots + h_{L-1} e^{-j(L-1)\omega} \\
= e^{-jl\omega} (2h_0 \cos l\omega + 2h_1 \cos(l - 1)\omega + \ldots + h_l) \\
\triangleq e^{-jl\omega} \tilde{H}(\omega)
\]

- Observations:
 - The phase is linear in \(\omega \), except for jumps of \(\pm \pi \).
 - \(\tilde{H}(\omega) \) is real and only depends on \(\tilde{h} \in \mathbb{R}^{l+1} \) which collects the first half of entries of \(h \).
 - \(|H(\omega)| = |\tilde{H}(\omega)| \).
Linear phase filters, cont’d

- Linear phase filter design:

\[
\begin{align*}
&\min_{\tilde{h}} f_0(\tilde{h}) \\
&\text{s.t. } L(\omega) \leq |\tilde{H}(\omega)| \leq U(\omega), \quad \forall \omega \in [0, \pi]
\end{align*}
\]

- As $\tilde{H}(\omega)$ is real and linear in \tilde{h}, the constraint is convex (with infinite number of constraints).
The autocorrelation r is defined as

$$r_{\tau} = \sum_{n=-L+1}^{L-1} h_n h_{n+\tau}, \quad \tau = 0, \ldots, L - 1.$$

Fourier transform of r is

$$R(\omega) = \sum_{\tau} e^{-j\omega \tau} r_{\tau} = r_0 + \sum_{\tau=1}^{L-1} 2r_{\tau} \cos \omega \tau = |H(\omega)|^2.$$

As $R(\omega)$ is linear in r,

$$L^2(\omega) \leq R(\omega) \leq U^2(\omega)$$

is convex.
But not all given r is valid autocorrelation of some h.

Spectral factorization theorem: r is a valid autocorrelation if and only if

$$R(\omega) \geq 0, \quad \omega \in [0, \pi].$$
Autocorrelation-based filter design, cont’d

Autocorrelation-based filter design:

\[
\begin{align*}
\min_{r} & \quad \tilde{f}_0(r) \\
\text{s.t.} & \quad L^2(\omega) \leq R(\omega) \leq U^2(\omega), \quad \forall \omega \in [0, \pi] \\
& \quad R(\omega) \geq 0, \quad \forall \omega \in [0, \pi].
\end{align*}
\]

Use spectral factorization to recover \(h \) from the solution \(r^* \).
Consider the general semi-infinite problem

\[
\begin{align*}
\min_{x} & \quad f_0(x) \\
\text{s.t.} & \quad Ax = b, \\
& \quad f_i(x) \leq 0, \quad i = 1, \ldots, m, \\
& \quad g_i(x, \omega) \leq 0, \quad \omega \in [0, \pi], \ i = 1, \ldots, p
\end{align*}
\]

where we assume $f_i(x)$ and $g_i(x, \omega)$ are convex for every ω.

x may have the meaning of filter coefficients h, or autocorrelation r, or other variables.
Handling semi-infinite constraints

- How to handle infinite number of constraints?

- Method 1: \(g_i(x, \omega) \leq 0, \ \forall \ \omega \in [0, \pi] \) is the same as

\[
h_i(x) \triangleq \sup_{\omega \in [0, \pi]} g_i(x, \omega) \leq 0.
\]

- \(h_i(x) \) is convex.
 - If \(h_i(x) \) admits closed-form solution, then we are lucky.
 - If \(h_i(x) \) and a \(\bar{\omega} \) such that \(h_i(x) = g_i(x, \bar{\omega}) \) can be computed efficiently, methods for nondifferential optimization can be used.
 - If \(h_i(x) \) admits good approximation, such as one-dimension search on \(\omega \), use the approximation.
 - If all fail, consider modifying your specification.
• Method 2: Sampling on frequency, i.e. choose some

\[0 \leq \omega_1 < \omega_2, < \ldots < \omega_K \leq \pi, \]

and impose the constraints

\[g_i(x, \omega_k) \leq -\epsilon, \quad k = 1, \ldots, K. \]

\{\omega_k\}_{k=1}^{K} can be chosen uniformly or logarithmically spaced.

\[\epsilon \geq 0 \] is chosen to ensure

\[g_i(x, \omega) \leq 0, \quad \forall \omega \in [0, \pi]. \]

• Engineering rule of thumb: \(K = 15L \) when using uniform spacing.

• This method is an approximation, but flexible, and often yields good results.
Method 3: The Kalman-Yakubovich-Popov (KYP) lemma can transform some particular form of semi-infinite constraints to some finite number of constraints involving linear matrix inequalities.

KYP lemma: Given A, B, and a Hermitian matrix Θ,

$$\begin{bmatrix} (j\omega I - A)^{-1}B \\ I \end{bmatrix}^H \Theta \begin{bmatrix} (j\omega I - A)^{-1}B \\ I \end{bmatrix} \prec 0$$

holds for all $\omega \in \mathbb{R} \cup \{\infty\}$ if and only if there exists a Hermitian matrix P s/t

$$\begin{bmatrix} A & B \\ I & 0 \end{bmatrix}^H \begin{bmatrix} 0 & P \\ P & 0 \end{bmatrix}^H \begin{bmatrix} A & B \\ I & 0 \end{bmatrix} + \Theta \prec 0.$$

There are generalized KYP lemmas which can be very useful.

KYP lemma is an exact transformation, but requires some specific form of semi-infinite constraints.
Example: Linear phase high pass filter

- **Specification:**
 - Linear phase filter, \(L = 51 \).
 - Passband \([0.8\pi, \pi]\); Stopband \([0, 0.7\pi]\).
 - Constraint: Passband magnitude \(1/1.01 \leq |\tilde{H}(\omega)| \leq 1.01 \).
 - Objective: Minimize stopband magnitude.

- **Time response** \(h[n] \)
- **Magnitude** $|H(\omega)|$

![Magnitude Graph](image1)

- **Phase** $\angle H(\omega)$

![Phase Graph](image2)

S. Boyd, “Filter design”, Lecture slide of EE364a, Stanford University.

