ELE5481

SIGNAL PROCESSING OPTIMIZATION TECHNIQUES

5. LINEAR AND QUADRATIC PROGRAMS

Linear Programming (LP)

A general form of LP:

$$
\begin{align*}
\min & c^{T} x \\
\text { s.t. } & G x \preceq h \tag{1}\\
A x & =b
\end{align*}
$$

A standard form of LP widely used in the literature \& software:

$$
\begin{align*}
\min & c^{T} x \\
\text { s.t. } & x \succeq 0 \tag{2}\\
& A x=b
\end{align*}
$$

LP is a problem of minimizing a linear objective function over a polyhedron.

The general form in (1) can be reformulated as the standard form in (2). Problem (1) is equiv. to

$$
\begin{align*}
\min & c^{T} x \\
\text { s.t. } & s \succeq 0, \quad h-G x=s, \quad A x=b \tag{*}
\end{align*}
$$

Let $x=x^{+}-x^{-}$, where $x^{+}, x^{-} \succeq 0$. Eq. $(*)$ is equiv. to

$$
\begin{aligned}
& \min \left[\begin{array}{lll}
c^{T} & -c^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x^{+} \\
x^{-} \\
s
\end{array}\right] \\
& \text { s.t. }\left[\begin{array}{c}
x^{+} \\
x^{-} \\
s
\end{array}\right] \succeq 0, \quad\left[\begin{array}{lll}
A & -A & 0 \\
G & -G & I
\end{array}\right]\left[\begin{array}{c}
x^{+} \\
x^{-} \\
s
\end{array}\right]=\left[\begin{array}{l}
b \\
h
\end{array}\right]
\end{aligned}
$$

A Brief History

- 1939: planning, production (Kantorovich)
- Noble prize in Economics, 1975
- 1940's: simplex algorithm for LP (Dantzig)
- used in Berlin airlift, 1948
- 1970's: polynomial-time ellipsoid algorithm for LP (Khachiyan)
- based on work by Dirkin, Shor and Nemirovski in 1960's
- front page news in the Western world, incl. New York Times (exaggerated)
- 1980's: polynomial-time interior-point algorithm for LP (Karmarkar)
- late 1980's-now: polynomial-time interior-point methods for nonlinear convex programs (Nesterov and Nemirovski, 1994)
- convex opt. software we used today is largely based on interior-point methods.

Application: Diet Problem

- x_{i} is the quantity of food i.
- Each unit of food i has a cost of c_{i}.
- One unit of food j contains an amount $A_{i j}$ of nutrient j.
- We want nutrient i to be at least equal to b_{i}.
- Problem: find the cheapest diet such that the minimum nutrient requirements are fulfilled.
- This problem can be cast as an LP:

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } A x \preceq b, \quad x \succeq 0
\end{array}
$$

Chebychev Center

- Let a norm ball $B\left(x_{c}, r\right)=\left\{x \mid\left\|x_{c}-x\right\|_{2} \leq r\right\}$, \& a polyhedron $\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}$.
- Problem: Find the largest ball inside a polyhedron \mathcal{P}; i.e., $\max _{x_{c}, r} r$, subject to $B\left(x_{c}, r\right) \subseteq \mathcal{P}$.

- An alternative representation of the norm ball: $B\left(x_{c}, r\right)=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}$.

$$
\begin{aligned}
B\left(x_{c}, r\right) \subseteq \mathcal{P} & \Longleftrightarrow \sup _{u}\left\{a_{i}^{T}\left(x_{c}+u\right) \mid\|u\|_{2} \leq r\right\} \leq b_{i}, \quad \forall i \\
& \Longleftrightarrow a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad \forall i
\end{aligned}
$$

- Hence, the Chebychev center problem is equiv. to an LP

$$
\begin{aligned}
& \max r \\
& \text { s.t. } a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

Piecewise Linear Minimization

$$
\min \max _{i=1, \ldots, m}\left(a_{i}^{T} x+b\right)
$$

By using the epigraph form, the problem is equiv. to
$\min t$

$$
\text { s.t. } \max _{i=1, \ldots, m}\left(a_{i}^{T} x+b\right) \leq t
$$

$\Longleftrightarrow \min t$

$$
\text { s.t. } a_{i}^{T} x+b \leq t, \quad i=1, \ldots, m
$$

which is an LP.

ℓ_{∞}-norm (Chebychev) Approximation

$$
\min \|A x-b\|_{\infty}
$$

Using the epigraph form, the ℓ_{∞}-norm approx. problem can be cast as an LP:
$\min t$
s.t. $\max _{i=1, \ldots, m}\left|r_{i}\right| \leq t$

$$
r=A x-b
$$

$\Longleftrightarrow \min t$

$$
\begin{gathered}
\text { s.t. }-t \mathbf{1} \preceq r \preceq t \mathbf{1} \\
r=A x-b
\end{gathered}
$$

ℓ_{1}-norm Approximation

$$
\min \|A x-b\|_{1}
$$

can be rewritten as

$$
\begin{aligned}
& \min \quad \sum_{i=1}^{m}\left|r_{i}\right| \\
& \quad \text { s.t. } r=A x-b \\
& \Longleftrightarrow \min \quad \sum_{i=1}^{m} t_{i} \\
& \text { s.t. }-t_{i} \leq r_{i} \leq t_{i}, \quad i=1, \ldots, m \\
& \quad r=A x-b
\end{aligned}
$$

which is an LP.

Linear Fractional Programming

$$
\begin{array}{ll}
\min & \frac{c^{T} x+d}{f^{T} x+g} \\
\text { s.t. } & A x \preceq b \\
& f^{T} x+g>0
\end{array}
$$

- The objective function is quasiconvex, and each of its sublevel sets is a polyhedron.

If the feasible set $\left\{x \mid A x \preceq b, f^{T} x+g>0\right\}$ is bounded, the linear fractional program can be transformed to an equiv. LP:

$$
\begin{aligned}
\min _{y \in \mathbf{R}^{n}, z \in \mathbf{R}} & c^{T} y+d z \\
\text { s.t. } & A y-b z \preceq 0, \quad z \geq 0 \\
& f^{T} y+g z=1
\end{aligned}
$$

- It can be shown that if $\left\{x \mid A x \preceq b, f^{T} x+g>0\right\}$ is bounded, then $z>0$ for any feasible (y, z).
- If (y, z) is feasible in the LP, then $x=y / z$ is feasible in the linear fractional program.
- This transformation is known as the Charnes-Cooper transformation.

Generalized linear fractional program:

$$
\begin{aligned}
\min & \max _{i=1, \ldots, K} \frac{c_{i}^{T} x+d}{f_{i}^{T} x+g_{i}} \\
\text { s.t. } & A x \preceq b \\
& f_{i}^{T} x+g_{i}>0, \quad i=1, \ldots, K
\end{aligned}
$$

- The objective function is quasiconvex.
- Can be solved using the bisection method.

Example: Optimal Power Assignment

- K transmitters, K receivers.

Receiver 2

Receiver 1
Receiver 3

Transmitter 2
Transmitter 1

- Transmitter i sends signals to receiver $i, \&$ the other transmitters are interferers.
- The signal-to-interference-and-noise ratio (SINR) at receiver i

$$
\gamma_{i}=\frac{G_{i i} p_{i}}{\sum_{j \neq i} G_{i j} p_{j}+\sigma_{i}^{2}}
$$

where p_{i} is the transmitter i power, $G_{i j}$ is the path gain from transmitter j to receiver i, and σ_{i}^{2} is the noise power at receiver i.

- Problem: Maximize the smallest γ_{i} subject to power constraints $0 \leq p_{i} \leq p_{\text {max }, i}$, where $p_{\text {max }, i}$ is the max. allowable power of transmitter i.
The power assignment problem is

$$
\max _{\substack{p_{i} \in\left[0, p_{\text {max }, i}\right] \\ i=1, \ldots, K}} \min _{i=1, \ldots, K} \frac{G_{i i} p_{i}}{\sum_{j \neq i} G_{i j} p_{j}+\sigma_{i}^{2}}
$$

which can be reformulated as a generalized linear fractional program:

$$
\begin{aligned}
& \min \max _{i=1, \ldots, K} \frac{\sum_{j \neq i} G_{i j} p_{j}+\sigma_{i}^{2}}{G_{i i} p_{i}} \\
& \text { s.t. } 0 \leq p_{i} \leq p_{\max , i}, \quad i=1, \ldots, K
\end{aligned}
$$

- Note: The power assignment problem can alternatively be solved by geometric programming, or by a closed-form method that utilizes the problem structure $G_{i j} \geq 0, \sigma_{i}^{2}>0$.

Example: Another Optimal Power Assignment Problem

Problem: Minimize the average transmitter power, subject to a constraint that all SINRs are not less than a pre-specified threshold γ_{o}.

$$
\begin{aligned}
\min _{p} & \sum_{i=1}^{K} p_{i} \\
\text { s.t. } & \frac{G_{i i} p_{i}}{\sum_{j \neq i} G_{i j} p_{j}+\sigma_{i}^{2}} \geq \gamma_{o}, \quad i=1, \ldots, K \\
& p_{i} \geq 0, \quad i=1, \ldots, K
\end{aligned}
$$

- The problem can be rewritten as

$$
\begin{aligned}
\min _{p} & \sum_{i=1}^{K} p_{i} \\
\text { s.t. } & -G_{i i} p_{i}+\gamma_{o} \sum_{j \neq i} G_{i j} p_{j}+\gamma_{o} \sigma_{i}^{2} \leq 0, \quad i=1, \ldots, K \\
& p_{i} \geq 0, \quad i=1, \ldots, K
\end{aligned}
$$

which is an LP.

- Note: There is a closed-form solution to the LP above, when taking into account the problem structure $G_{i j} \geq 0, \sigma_{i}^{2}>0$.

Additional Reading

[SB04] M. Schubert and H. Boche, "Solution of the multiuser downlink beamforming problem with individual SINR constraints," IEEE Trans. Vehicular Tech., 2004.

Quadratic Programming (QP)

$$
\begin{aligned}
\min & \frac{1}{2} x^{T} P x+q^{T} x+r \\
\text { s.t. } & A x=b, \quad G x \preceq h
\end{aligned}
$$

A QP is convex iff $P \succeq 0$.

- Unconstrained QP (or LS)

$$
\min \frac{1}{2} x^{T} P x+q^{T} x+r
$$

is a special case of QP where a closed form solution is available.

- The optimality condition is $P x=-q$.
- If $P \succ 0$ then $x^{\star}=-P^{-1} q$.
- If $P \succeq 0$ but $q \notin \mathcal{R}(P)$, then there is no solution for $P x=-q$. It can also be shown that $p^{\star}=-\infty$.
- If $P \succeq 0 \& q \in \mathcal{R}(P)$, then $x^{\star}=-P^{\dagger} q+\nu$ for any $\nu \in \mathcal{N}(P)$.

Examples:

- LS with bound constraints:

$$
\begin{gathered}
\min \\
\\
\text { s.t. } \ell \preceq x-b \|_{2}^{2} \\
\end{gathered}
$$

- Distance between between polyhedra:

$$
\begin{aligned}
& \min \left\|x_{1}-x_{2}\right\|_{2}^{2} \\
& \text { s.t. } x_{1} \in\left\{x \mid A_{1} x \preceq b_{1}\right\}, x_{2} \in\left\{x \mid A_{2} x \preceq b_{2}\right\} \\
\Longleftrightarrow & \min \left\|x_{1}-x_{2}\right\|_{2}^{2} \\
& \text { s.t. } A_{1} x_{1} \preceq b_{1}, \quad A_{2} x_{2} \preceq b_{2}
\end{aligned}
$$

Quadratically Constrained QP (QCQP)

$$
\begin{aligned}
\min & \frac{1}{2} x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { s.t. } & \frac{1}{2} x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{aligned}
$$

- QCQP is convex if $P_{i} \succeq 0$ for all i.
- When $P_{i} \succ 0$ for $i=1, \ldots, m$, QCQP is a quadratic min. problem over an intersection of ellipsoids.
- If $P_{i}=0$ for $i=1, \ldots, m$, then QCQP reduces to QP.
- If $P_{i}=0$ for $i=0,1, \ldots, m$, then QCQP reduces to LP.

Beamformer Design via QPs

Uniform linear array:

Signal model:

A1) far-field situations so that source waves are planar; \&
A2) narrowband source signals so that the received signal of one sensor is a phase shifted version of that of another.

If a source signal $s(t) \in \mathbf{C}$ comes from a direction of θ, the array output $y(t)=\left[y_{1}(t), \ldots, y_{P}(t)\right]^{T}$ is

$$
y(t)=a(\theta) s(t)
$$

Here,

$$
a(\theta)=\left[1, e^{-j 2 \pi d \sin (\theta) / \lambda}, \ldots, e^{-j 2 \pi d(P-1) \sin (\theta) / \lambda}\right]^{T} \in \mathbf{C}^{P}
$$

is the steering vector, where λ is the signal wavelength.

Beamforming:

$$
\hat{s}(t)=w^{H} y(t)
$$

where $w \in \mathbf{C}^{P}$ is a beamformer weight vector.

- Let $\theta_{\text {des }} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ be the desired direction.
- A simple beamformer is $w=a\left(\theta_{\text {des }}\right)$, but it does not provide good sidelobe suppression.
- Problem: find a w that minimizes sidelobe energy subject to a pass response to $\theta_{\text {des }}$.

Direction pattern of the conventional beamformer. $\theta_{\text {des }}=10^{\circ} ; P=20$.

- Let $\Omega=\left[-\frac{\pi}{2}, \theta_{\ell}\right] \cup\left[\theta_{u}, \frac{\pi}{2}\right]$ denote the sidelobe band, for some $\theta_{\ell}, \theta_{u}$ so that $\theta_{\text {des }} \in\left[\theta_{\ell}, \theta_{u}\right]$.
- Average sidelobe energy minimization:

$$
\begin{aligned}
& \min \int_{\Omega}\left|w^{H} a(\theta)\right|^{2} d \theta \\
& \text { s.t. } w^{H} a\left(\theta_{\text {des }}\right)=1
\end{aligned}
$$

The problem is equiv. to an equality constrained QP:

$$
\begin{aligned}
& \min w^{H} P w \\
& \text { s.t. } w^{H} a\left(\theta_{\text {des }}\right)=1
\end{aligned}
$$

where $P=\int_{\Omega} a(\theta) a^{H}(\theta) d \theta$ (can be computed by numerical integration).

- Worst-case sidelobe energy minimization:

$$
\begin{aligned}
& \min \max _{\theta \in \Omega}\left|w^{H} a(\theta)\right|^{2} \\
& \text { s.t. } w^{H} a\left(\theta_{\text {des }}\right)=1
\end{aligned}
$$

The problem can be reformulated as
$\min t$

$$
\begin{aligned}
& \text { s.t. }\left|w^{H} a(\theta)\right|^{2} \leq t, \quad \theta \in \Omega \\
& \qquad w^{H} a\left(\theta_{\mathrm{des}}\right)=1
\end{aligned}
$$

which is a QCQP with semi-infinite constraints.

- The worst-case sidelobe energy minimization problem can be approximated by discretization.
- Let $\theta_{1}, \theta_{2}, \cdots, \theta_{L}$ be some set of sample points in Ω. We approximate the problem by

$$
\begin{aligned}
& \min t \\
& \text { s.t. }\left|w^{H} a\left(\theta_{i}\right)\right|^{2} \leq t, \quad i=1, \ldots, L \\
& \quad w^{H} a\left(\theta_{\text {des }}\right)=1
\end{aligned}
$$

Direction patterns of the two beamformer designs. $\theta_{\text {des }}=10^{\circ}$. Sidelobe suppression is applied to directions outside $\left[0^{\circ}, 20^{\circ}\right]$.

