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Linear Programming (LP)

A general form of LP:

min cTx

s.t. Gx � h (1)

Ax = b

A standard form of LP widely used in the literature & software:

min cTx

s.t. x � 0 (2)

Ax = b
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LP is a problem of minimizing a linear objective function over a polyhedron.
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The general form in (1) can be reformulated as the standard form in (2). Problem (1)

is equiv. to

min cTx

s.t. s � 0, h−Gx = s, Ax = b (∗)

Let x = x+ − x−, where x+, x− � 0. Eq. (∗) is equiv. to

min [ cT − cT 0 ]
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A Brief History

• 1939: planning, production (Kantorovich)

– Noble prize in Economics, 1975

• 1940’s: simplex algorithm for LP (Dantzig)

– used in Berlin airlift, 1948

• 1970’s: polynomial-time ellipsoid algorithm for LP (Khachiyan)

– based on work by Dirkin, Shor and Nemirovski in 1960’s

– front page news in the Western world, incl. New York Times (exaggerated)

• 1980’s: polynomial-time interior-point algorithm for LP (Karmarkar)

• late 1980’s-now: polynomial-time interior-point methods for nonlinear convex

programs (Nesterov and Nemirovski, 1994)

– convex opt. software we used today is largely based on interior-point methods.
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Application: Diet Problem

• xi is the quantity of food i.

• Each unit of food i has a cost of ci.

• One unit of food j contains an amount Aij of nutrient j.

• We want nutrient i to be at least equal to bi.

• Problem: find the cheapest diet such that the minimum nutrient requirements are

fulfilled.

• This problem can be cast as an LP:

min cTx

s.t. Ax � b, x � 0
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Chebychev Center

• Let a norm ball B(xc, r) = { x | ‖xc − x‖2 ≤ r }, & a polyhedron

P = { x | aTi x ≤ bi, i = 1, . . . ,m }.

• Problem: Find the largest ball inside a polyhedron P ; i.e., maxxc,r r, subject to

B(xc, r) ⊆ P .

xcr
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• An alternative representation of the norm ball: B(xc, r) = { xc + u | ‖u‖2 ≤ r }.

•

B(xc, r) ⊆ P ⇐⇒ sup
u
{ aTi (xc + u) | ‖u‖2 ≤ r } ≤ bi, ∀i

⇐⇒aTi xc + r‖ai‖2 ≤ bi, ∀i

• Hence, the Chebychev center problem is equiv. to an LP

max r

s.t. aTi xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m
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Piecewise Linear Minimization

min max
i=1,...,m

(aTi x+ b)

By using the epigraph form, the problem is equiv. to

min t

s.t. maxi=1,...,m(aTi x+ b) ≤ t

⇐⇒ min t

s.t. aTi x+ b ≤ t, i = 1, . . . ,m

which is an LP.
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ℓ∞-norm (Chebychev) Approximation

min ‖Ax− b‖∞

Using the epigraph form, the ℓ∞-norm approx. problem can be cast as an LP:

min t

s.t. maxi=1,...,m |ri| ≤ t

r = Ax− b

⇐⇒ min t

s.t. − t1 � r � t1

r = Ax− b
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ℓ1-norm Approximation

min ‖Ax− b‖1

can be rewritten as

min
∑m

i=1 |ri|

s.t. r = Ax− b

⇐⇒ min
∑m

i=1 ti

s.t. − ti ≤ ri ≤ ti, i = 1, . . . ,m

r = Ax− b

which is an LP.
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Linear Fractional Programming

min
cTx+ d

fTx+ g

s.t. Ax � b

fTx+ g > 0

• The objective function is quasiconvex, and each of its sublevel sets is a polyhedron.
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If the feasible set {x|Ax � b, fTx+ g > 0} is bounded, the linear fractional program

can be transformed to an equiv. LP:

min
y∈Rn,z∈R

cT y + dz

s.t. Ay − bz � 0, z ≥ 0

fT y + gz = 1

• It can be shown that if {x|Ax � b, fTx+ g > 0} is bounded, then z > 0 for any

feasible (y, z).

• If (y, z) is feasible in the LP, then x = y/z is feasible in the linear fractional

program.

• This transformation is known as the Charnes-Cooper transformation.
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Generalized linear fractional program:

min max
i=1,...,K

cTi x+ d

fT
i x+ gi

s.t. Ax � b

fT
i x+ gi > 0, i = 1, . . . , K

• The objective function is quasiconvex.

• Can be solved using the bisection method.
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Example: Optimal Power Assignment

• K transmitters, K receivers.

Transmitter 1

Receiver 1

Transmitter 2

Receiver 2

Transmitter 3

Receiver 3

• Transmitter i sends signals to receiver i, & the other transmitters are interferers.

• The signal-to-interference-and-noise ratio (SINR) at receiver i

γi =
Giipi

∑

j 6=iGijpj + σ2
i

where pi is the transmitter i power, Gij is the path gain from transmitter j to

receiver i, and σ2
i is the noise power at receiver i.
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• Problem: Maximize the smallest γi subject to power constraints 0 ≤ pi ≤ pmax,i,

where pmax,i is the max. allowable power of transmitter i.

The power assignment problem is

max
pi∈[0,pmax,i]
i=1,...,K

min
i=1,...,K

Giipi
∑

j 6=iGijpj + σ2
i

which can be reformulated as a generalized linear fractional program:

min max
i=1,...,K

∑

j 6=i Gijpj + σ2
i

Giipi

s.t. 0 ≤ pi ≤ pmax,i, i = 1, . . . , K

• Note: The power assignment problem can alternatively be solved by geometric

programming, or by a closed-form method that utilizes the problem structure

Gij ≥ 0, σ2
i > 0.
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Example: Another Optimal Power Assignment Problem

Problem: Minimize the average transmitter power, subject to a constraint that all

SINRs are not less than a pre-specified threshold γo.

min
p

K
∑

i=1

pi

s.t.
Giipi

∑

j 6=i Gijpj + σ2
i

≥ γo, i = 1, . . . , K

pi ≥ 0, i = 1, . . . , K
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• The problem can be rewritten as

min
p

K
∑

i=1

pi

s.t. −Giipi + γo
∑

j 6=i

Gijpj + γoσ
2
i ≤ 0, i = 1, . . . , K

pi ≥ 0, i = 1, . . . , K

which is an LP.

• Note: There is a closed-form solution to the LP above, when taking into account

the problem structure Gij ≥ 0, σ2
i > 0.
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Additional Reading

[SB04] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming

problem with individual SINR constraints,” IEEE Trans. Vehicular Tech., 2004.
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Quadratic Programming (QP)

min 1
2x

TPx+ qTx+ r

s.t. Ax = b, Gx � h

A QP is convex iff P � 0.

x
⋆
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• Unconstrained QP (or LS)

min 1
2x

TPx+ qTx+ r

is a special case of QP where a closed form solution is available.

• The optimality condition is Px = −q.

– If P ≻ 0 then x⋆ = −P−1q.

– If P � 0 but q /∈ R(P ), then there is no solution for Px = −q. It can also be

shown that p⋆ = −∞.

– If P � 0 & q ∈ R(P ), then x⋆ = −P †q + ν for any ν ∈ N (P ).
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Examples:

• LS with bound constraints:

min ‖Ax− b‖22

s.t. ℓ � x � u

• Distance between between polyhedra:

min ‖x1 − x2‖
2
2

s.t. x1 ∈ {x|A1x � b1}, x2 ∈ {x|A2x � b2}

⇐⇒ min ‖x1 − x2‖
2
2

s.t. A1x1 � b1, A2x2 � b2
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Quadratically Constrained QP (QCQP)

min 1
2x

TP0x+ qT0 x+ r0

s.t. 1
2x

TPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b

• QCQP is convex if Pi � 0 for all i.

• When Pi ≻ 0 for i = 1, . . . ,m, QCQP is a quadratic min. problem over an

intersection of ellipsoids.

• If Pi = 0 for i = 1, . . . ,m, then QCQP reduces to QP.

• If Pi = 0 for i = 0, 1, . . . ,m, then QCQP reduces to LP.
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Beamformer Design via QPs

Uniform linear array:

source

θ

d sin θ , ∆

dd

x(t) x
(

t− ∆
c

)

x
(

t− (P − 1)∆c
)
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Signal model:

A1) far-field situations so that source waves are planar; &

A2) narrowband source signals so that the received signal of one sensor is a phase

shifted version of that of another.

If a source signal s(t) ∈ C comes from a direction of θ, the array output

y(t) = [ y1(t), . . . , yP (t) ]
T is

y(t) = a(θ)s(t)

Here,

a(θ) = [ 1, e−j2πd sin(θ)/λ, . . . , e−j2πd(P−1) sin(θ)/λ ]T ∈ C
P

is the steering vector, where λ is the signal wavelength.
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Beamforming:

ŝ(t) = wHy(t)

where w ∈ C
P is a beamformer weight vector.

• Let θdes ∈ [−π
2 ,

π
2 ] be the desired direction.

• A simple beamformer is w = a(θdes), but it does not provide good sidelobe

suppression.

• Problem: find a w that minimizes sidelobe energy subject to a pass response to

θdes.
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Direction pattern of the conventional beamformer. θdes = 10◦; P = 20.
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• Let Ω = [−π
2 , θℓ] ∪ [θu,

π
2 ] denote the sidelobe band, for some θℓ, θu so that

θdes ∈ [θℓ, θu].

• Average sidelobe energy minimization:

min

∫

Ω

|wHa(θ)|2dθ

s.t. wHa(θdes) = 1

The problem is equiv. to an equality constrained QP:

min wHPw

s.t. wHa(θdes) = 1

where P =
∫

Ω
a(θ)aH(θ)dθ (can be computed by numerical integration).
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• Worst-case sidelobe energy minimization:

min max
θ∈Ω

|wHa(θ)|2

s.t. wHa(θdes) = 1

The problem can be reformulated as

min t

s.t. |wHa(θ)|2 ≤ t, θ ∈ Ω

wHa(θdes) = 1

which is a QCQP with semi-infinite constraints.
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• The worst-case sidelobe energy minimization problem can be approximated by

discretization.

• Let θ1, θ2, · · · , θL be some set of sample points in Ω. We approximate the problem

by

min t

s.t. |wHa(θi)|
2 ≤ t, i = 1, . . . , L

wHa(θdes) = 1
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Average sidelobe power minimization (via QP)
Worst−case sidelobe power minimization (via QCQP)

Direction patterns of the two beamformer designs. θdes = 10◦. Sidelobe

suppression is applied to directions outside [0◦, 20◦].
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