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Extended-Valued Extensions on Functions

• It is often convenient to extend a function domain to all of Rn.

• Extended-valued extension of f :

f̃(x) =







f(x), x ∈ domf

+∞, x /∈ domf

• If f is convex then f̃ is also convex.
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Optimization Problems in a Standard Form

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where

f0 is the objective function;

fi, i = 1, . . . ,m are inequality constraint functions;

hi are equality constraint functions.

Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 3



ELEG5481 Signal Processing Optimization Techniques 4. Convex Optimization Problems

Some Terminology

• The set

D =
m⋂

i=0

domfi ∩

p
⋂

i=1

domhi

is the problem domain.

• The set

C = {x|fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

is called the feasible set, or the constraint set.
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• A point x is feasible if x ∈ C, and infeasible otherwise.

• The inequality constraint fi(x) is active at x ∈ C if fi(x) = 0.

• A point x is strictly feasible if

fi(x) < 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

i.e., all inequality constraints are inactive.

Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 5



ELEG5481 Signal Processing Optimization Techniques 4. Convex Optimization Problems

• A problem is

feasible if there exists x ∈ C;

infeasible if C = ∅;

strictly feasible if there is a strictly feasible point.

• A problem is unconstrained if C = R
n.
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• Optimal value:

p⋆ = inf
x∈C

f0(x)

If the problem is infeasible, we choose p⋆ = +∞. If p⋆ = −∞, the problem is

unbounded below.

• A point x⋆ is globally optimal or simply optimal if x⋆ ∈ C & f0(x
⋆) = p⋆.

• The problem is solvable if an opt. point exists.

• A point x is locally optimal if there is an R > 0 such that

f0(x) = inf{ f0(x̃) | x̃ ∈ C, ‖x̃− x‖2 ≤ R }
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Related Problems

• Maximizing an objective function over a constraint set is equivalent to a

minimization problem:

max
x∈C

f0(x) = −min
x∈C

−f0(x)

• The feasibility problem

find x

s.t. x ∈ C

is an opt. problem where f0(x) = 0. In this case p⋆ = 0 if C 6= ∅, and p⋆ = +∞ if

C = ∅.
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Convex Optimization Problem

A standard problem

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

is convex if f0, . . . , fm are convex and h1, . . . , hp are affine.

A standard convex problem is often written as

min f0(x)

s.t. Ax = b, fi(x) ≤ 0, i = 1, . . . ,m

where A ∈ R
p×n, b ∈ R

p.
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Convex Opt. Examples:

• Least squares (LS):

min ‖Ax− b‖22

• A problem related to LS is the unconstrained quadratic program (QP):

min xTPx+ 2qTx+ r

which is convex iff P � 0.

LS is an unconstrained QP with P = ATA � 0.

(Question: what happens when P is indefinite?)
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Convex Opt. Examples (cont’d):

• Linear program (LP):

min cTx

s.t. x � 0

Ax = b

• Minimum norm approximation with bound constraints:

min ‖Ax− b‖

s.t. ℓi ≤ xi ≤ ui, i = 1, . . . ,m

for any norm ‖.‖.

Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 11



ELEG5481 Signal Processing Optimization Techniques 4. Convex Optimization Problems

Local and Global Optimality

For convex opt. problems, any locally optimal solution is globally optimal.

Let x⋆ be globally opt., & x be locally opt. with f0(x
⋆) < f0(x). Let

z = (1− θ)x+ θx⋆:

f0(z) ≤ (1− θ)f0(x) + θf0(x
⋆) < f0(x), ∀θ ∈ [0, 1] (∗)

Since C is convex, z ∈ C ∀ θ ∈ [0, 1]. For small enough θ, z satisfies ‖z − x‖2 < R &

thus

f0(z) ≥ f0(x)

This contradicts with (∗).
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An Optimality Criterion

Assume that f0 is differentiable, & that the problem is convex.

A point x ∈ C is optimal iff

∇f0(x)
T (y − x) ≥ 0, ∀y ∈ C (∗)

The sufficiency of this optimality criterion is straightforward.

From the 1st order condition,

f0(y) ≥ f0(x) +∇f0(x)
T (y − x), ∀y ∈ C

If x satisfies (∗) then f0(y) ≥ f0(x) ∀y ∈ C.
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Interpretations of the optimality criterion:

∇f0(x)
T (y − x) ≥ 0, ∀y ∈ C

implies that an optimal x ∈ C either achieves ∇f0(x) = 0,

or has −∇f0(x) forming a supporting hyperplane for C.

x

C

Case 1: ∇f0(x) = 0

x

C

−∇f0(x)

Case 2: ∇f0(x)
T (y − x) ≥ 0, ∀y ∈ C
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For an unconstrained convex problem, x ∈ C is optimal iff

∇f0(x) = 0.

Example: The unconstrained QP:

min xTPx+ 2qTx+ r

The optimality criterion of LS is

∇f0(x) = 2Px+ 2q

If P is invertible (or P ≻ 0), then x = −P−1q is the optimal solution.
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Equivalent Problem: Epigraph Form

min t

s.t. f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

t

p⋆

epif

x

x⋆
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• Now we minimize the problem with respect to x & t.

• f0(x)− t is convex in x and t, and hence the problem is still convex.

Example: Piecewise linear objective

min
x∈C

max
i=1,...,m

{aTi x+ bi} ⇐⇒ min
x∈C, t∈R

t

s.t. max
i=1,...,m

{aTi x+ bi} ≤ t,

⇐⇒ min
x∈C, t∈R

t

s.t. aTi x+ bi ≤ t, i = 1, . . . ,m
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Equiv. Problem: Equality Constraint Elimination

Let A† be the pseudo-inverse of A, N (A) be the nullspace of A, & R(A) be the range

space of A.

Ax = b⇐⇒ x = A†b+ ν, ν ∈ N (A)

⇐⇒ x = A†b+ Fz, z ∈ R
d

for some F ∈ R
n×d such that R(F ) = N (A), d = dim(N (A)).

A standard convex problem can be rewritten as

min
z

f0(A
†b+ Fz)

s.t. fi(A
†b+ Fz) ≤ 0, i = 1, . . . ,m
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Example:

min xTRx

s.t. Ax = b

can be turned to

min
z

(x0 − Fz)TR(x0 − Fz).

where x0 = A†b.

Suppose that FTRF ≻ 0. The optimal solution is

z⋆ = (FTRF )−1FTRx0.
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Equivalent Problem: Function Transformations

Suppose ψ0 : R → R is monotone increasing, & ψi : R → R, i = 1, . . . ,m satisfy

ψi(u) ≤ 0 iff u ≤ 0.

A standard problem is equivalent to

min ψ0(f0(x))

s.t. ψi(fi(x)) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
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Examples:

• The inequality constraint

log x ≤ 1

has a nonconvex inequality function. But

log x ≤ 1 ⇐⇒ x ≤ e1

• Consider

1− x1x2 ≤ 0, x1 ≥ 0, x2 ≥ 0

1− x1x2 is non-convex. But we can replace it by

− log x1 − log x2 ≤ 0, x1 ≥ 0, x2 ≥ 0
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Examples (Cont’d):

• The least 2-norm problem

min ‖Ax− b‖2 (∗)

is equiv. to the LS problem min ‖Ax− b‖22.

In fact we want to avoid (∗), which exhibits less desirable differentiation properties.

• Suppose that P � 0. The problem

max
x∈C

1

xTPx

is equivalent to

min
x∈C

xTPx
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Example: maximum-likelihood (ML) estimation of mean

Likelihood function for m Gaussian samples with mean µ and covariance Σ:

L(µ,Σ) =
1

(2π)
nm

2 (detΣ)
m

2

exp

{

−
1

2

m∑

i=1

(xi − µ)TΣ−1(xi − µ)

}

Given Σ, the ML estimation of µ is

max
µ

L(µ,Σ)

We often put logarithm on L(µ,Σ) to obtain an equiv. but convex problem

max
µ

logL(µ,Σ) ∝ max
µ

−
∑m

i=1(xi − µ)TΣ−1(xi − µ)
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Equivalent Problem: Change of Variables

Suppose φ : Rn → R
n is one-to-one with image covering the problem domain.

Define

f̃i(z) = fi(φ(z)), i = 0, . . . ,m, h̃i(z) = hi(φ(z)), i = 1, . . . , p

A standard problem is equivalent to

min f̃0(z)

s.t. f̃i(z) ≤ 0, i = 1, . . . ,m

h̃i(z) = 0, i = 1, . . . , p

Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 24



ELEG5481 Signal Processing Optimization Techniques 4. Convex Optimization Problems

Example: ML estimation of covariance

Consider the log likelihood in the last example, which can be expressed as

logL(µ,Σ) ∝ −m
2 log detΣ− m

2 tr(ĈµΣ
−1)

where Ĉµ = 1
m

∑m

i=1(xi − µ)(xi − µ)T .

Given µ, the ML estimation of Σ is

max
Σ≻0

− log detΣ− tr(ĈµΣ
−1)

which can be shown to have a nonconcave objective function.
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Let Ψ = Σ−1 ≻ 0. The ML problem is equiv. to

max
Ψ≻0

log detΨ− tr(ĈµΨ)

which is a convex problem.
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More about ML mean and covariance estimation Joint ML estimation of µ and Σ:

max
µ,Ψ=Σ−1≻0

log detΨ− tr(ĈµΨ)
︸ ︷︷ ︸

,f0(µ,Ψ)

= max
Ψ≻0

max
µ

f0(µ,Ψ)

Consider the inner maximization given Ψ:

∇µf0 = − 1
m

∑m
i=1Ψxi −Ψµ

⇐⇒ argmaxµ f0(µ,Ψ) = 1
m

∑m
i=1 xi , µ̂

A neat result is that µ̂ does not depend on Ψ.
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Putting the optimal µ back to the ML problem

max
Ψ≻0

log detΨ− tr(Ĉµ̂Ψ)

Using

∇Ψf0 = Ψ−1 − Ĉµ,

we arrive at

Σ̂ = Ψ̂−1 = Ĉµ̂,

assuming that Ĉµ̂ ≻ 0.

Remark: the sampled mean and covariance are indeed the ML estimates, under the

Gaussian assumption.

Question: f0(µ,Ψ) is concave in either µ or Ψ ≻ 0, but is it concave in µ and Ψ ≻ 0?
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Standard Form with Generalized Inequalities

A convex problem with generalized inequalities:

min f0(x)

s.t. fi(x) �Ki
0, i = 1, . . . , L

Ax = b

where

• �Ki
are generalized inequalities on R

m,

• fi : R
n → R

m are Ki-convex.
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Examples

• Second order cone program:

min cT0 x

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

• Semidefinite program:

min tr(CX)

s.t. X � 0

tr(AiX) = bi, i = 1, . . . , p
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Quasiconvex Optimization

A quasiconvex opt. problem has a standard form

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

where f0(x) is quasiconvex, and fi(x) convex for i > 1.
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• A quasiconvex problem can have locally optimal points

f0(x)

x

a locally optimal x

• A point x ∈ C is optimal if

∇f0(x)
T (y − x) > 0, ∀y ∈ C

But the converse is not always true.
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Let φt : R
n → R, t ∈ R, be a family of convex functions that satisfy

f0(x) ≤ t⇐⇒ φt(x) ≤ 0

and also, for each x, φs(x) ≤ φt(x) whenever s ≤ t.

Fixing a t, the following feasibility problem is convex

find x

s.t. φt(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Idea: decrease t until the convex feasibility problem is infeasible.
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Assume that p⋆ is known to lie within [ℓ, u].

Bisection method for quasiconvex optimization

given bounds ℓ, u, and tolerance ǫ.

repeat

1. t := (ℓ+ u)/2.

2. Solve the convex feasibility problem.

3. if the problem is feasible, u := t; otherwise ℓ := t.

until u− ℓ ≤ ǫ.
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