4. Convex Optimization Problems

ELEG5481

SIGNAL PROCESSING OPTIMIZATION TECHNIQUES

4. CONVEX OPTIMIZATION PROBLEMS

Extended-Valued Extensions on Functions

- It is often convenient to extend a function domain to all of \mathbf{R}^n .
- Extended-valued extension of *f*:

$$\widetilde{f}(x) = \begin{cases}
f(x), & x \in \mathbf{dom}f \\
+\infty, & x \notin \mathbf{dom}f
\end{cases}$$

• If f is convex then \tilde{f} is also convex.

Optimization Problems in a Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

where

 f_0 is the **objective function**;

 $f_i, i = 1, \ldots, m$ are inequality constraint functions;

 h_i are equality constraint functions.

Some Terminology

• The set

$$\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} f_i \cap \bigcap_{i=1}^{p} \mathbf{dom} h_i$$

is the problem domain.

• The set

$$C = \{x | f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

is called the **feasible set**, or the **constraint set**.

- A point x is feasible if $x \in C$, and infeasible otherwise.
- The inequality constraint $f_i(x)$ is active at $x \in C$ if $f_i(x) = 0$.
- A point x is **strictly feasible** if

$$f_i(x) < 0, \ i = 1, \dots, m, \quad h_i(x) = 0, \ i = 1, \dots, p$$

i.e., all inequality constraints are inactive.

• A problem is

feasible if there exists $x \in C$; infeasible if $C = \emptyset$;

strictly feasible if there is a strictly feasible point.

• A problem is **unconstrained** if $C = \mathbf{R}^n$.

• Optimal value:

$$p^{\star} = \inf_{x \in C} f_0(x)$$

If the problem is infeasible, we choose $p^{\star} = +\infty$. If $p^{\star} = -\infty$, the problem is **unbounded below.**

- A point x^* is globally optimal or simply optimal if $x^* \in C \& f_0(x^*) = p^*$.
- The problem is **solvable** if an opt. point exists.
- A point x is **locally optimal** if there is an R > 0 such that

$$f_0(x) = \inf\{ f_0(\tilde{x}) \mid \tilde{x} \in C, \|\tilde{x} - x\|_2 \le R \}$$

• Maximizing an objective function over a constraint set is equivalent to a minimization problem:

$$\max_{x \in C} f_0(x) = -\min_{x \in C} -f_0(x)$$

• The feasibility problem

find xs.t. $x \in C$

is an opt. problem where $f_0(x) = 0$. In this case $p^* = 0$ if $C \neq \emptyset$, and $p^* = +\infty$ if $C = \emptyset$.

Convex Optimization Problem

A standard problem

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

is **convex** if f_0, \ldots, f_m are convex and h_1, \ldots, h_p are affine. A standard convex problem is often written as

min
$$f_0(x)$$

s.t. $Ax = b, f_i(x) \le 0, \quad i = 1, ..., m$

where $A \in \mathbf{R}^{p \times n}$, $b \in \mathbf{R}^p$.

Convex Opt. Examples:

• Least squares (LS):

$$\min \|Ax - b\|_2^2$$

• A problem related to LS is the unconstrained quadratic program (QP):

$$\min x^T P x + 2q^T x + r$$

which is convex iff $P \succeq 0$.

LS is an unconstrained QP with $P = A^T A \succeq 0$.

(Question: what happens when P is indefinite?)

Convex Opt. Examples (cont'd):

• Linear program (LP):

 $\min c^T x$
s.t. $x \succeq 0$
Ax = b

• Minimum norm approximation with bound constraints:

 $\min \|Ax - b\|$ s.t. $\ell_i \le x_i \le u_i, \quad i = 1, \dots, m$

for any norm $\|.\|$.

Local and Global Optimality

For convex opt. problems, any locally optimal solution is globally optimal.

Let x^* be globally opt., & x be locally opt. with $f_0(x^*) < f_0(x)$. Let $z = (1 - \theta)x + \theta x^*$:

$$f_0(z) \le (1 - \theta) f_0(x) + \theta f_0(x^*) < f_0(x), \ \forall \theta \in [0, 1]$$
(*)

Since C is convex, $z \in C \forall \theta \in [0, 1]$. For small enough θ , z satisfies $||z - x||_2 < R$ & thus

$$f_0(z) \ge f_0(x)$$

This contradicts with (*).

An Optimality Criterion

Assume that f_0 is differentiable, & that the problem is convex. A point $x \in C$ is optimal iff

$$\nabla f_0(x)^T (y - x) \ge 0, \quad \forall y \in C$$
(*)

The sufficiency of this optimality criterion is straightforward. From the 1st order condition,

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x), \ \forall y \in C$$

If x satisfies (*) then $f_0(y) \ge f_0(x) \ \forall y \in C$.

Interpretations of the optimality criterion:

$$\nabla f_0(x)^T(y-x) \ge 0, \quad \forall y \in C$$

implies that an optimal $x \in C$ either achieves $\nabla f_0(x) = 0$,

or has $-\nabla f_0(x)$ forming a supporting hyperplane for C.

Case 1: $\nabla f_0(x) = 0$

Case 2: $\nabla f_0(x)^T(y-x) \ge 0, \ \forall y \in C$

For an unconstrained convex problem, $x \in C$ is optimal iff

$$\nabla f_0(x) = 0.$$

Example: The unconstrained QP:

$$\min x^T P x + 2q^T x + r$$

The optimality criterion of LS is

$$\nabla f_0(x) = 2Px + 2q$$

If P is invertible (or $P \succ 0$), then $x = -P^{-1}q$ is the optimal solution.

Equivalent Problem: Epigraph Form

Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong

- Now we minimize the problem with respect to x & t.
- $f_0(x) t$ is convex in x and t, and hence the problem is still convex.

Example: Piecewise linear objective

$$\min_{x \in C} \max_{i=1,...,m} \{a_i^T x + b_i\} \iff \min_{x \in C, \ t \in \mathbf{R}} t$$
s.t.
$$\max_{i=1,...,m} \{a_i^T x + b_i\} \le t,$$

$$\iff \min_{x \in C, \ t \in \mathbf{R}} t$$
s.t.
$$a_i^T x + b_i \le t, \ i = 1,...,m$$

Equiv. Problem: Equality Constraint Elimination

Let A^{\dagger} be the pseudo-inverse of A, $\mathcal{N}(A)$ be the nullspace of A, & $\mathcal{R}(A)$ be the range space of A.

$$Ax = b \iff x = A^{\dagger}b + \nu, \quad \nu \in \mathcal{N}(A)$$
$$\iff x = A^{\dagger}b + Fz, \quad z \in \mathbb{R}^{d}$$

for some $F \in \mathbb{R}^{n \times d}$ such that $\mathcal{R}(F) = \mathcal{N}(A)$, $d = \dim(\mathcal{N}(A))$.

A standard convex problem can be rewritten as

$$\min_{z} f_0(A^{\dagger}b + Fz)$$

s.t. $f_i(A^{\dagger}b + Fz) \le 0, \quad i = 1, \dots, m$

Example:

$$\min x^T R x$$

s.t. $Ax = b$

can be turned to

$$\min_{z} (x_0 - Fz)^T R(x_0 - Fz).$$

where $x_0 = A^{\dagger}b$.

Suppose that $F^T R F \succ 0$. The optimal solution is

 $z^{\star} = (F^T R F)^{-1} F^T R x_0.$

Equivalent Problem: Function Transformations

Suppose $\psi_0 : \mathbf{R} \to \mathbf{R}$ is monotone increasing, & $\psi_i : \mathbf{R} \to \mathbf{R}$, i = 1, ..., m satisfy $\psi_i(u) \leq 0$ iff $u \leq 0$.

A standard problem is equivalent to

$$\min \psi_0(f_0(x))$$

s.t. $\psi_i(f_i(x)) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

Examples:

• The inequality constraint

 $\log x \le 1$

has a nonconvex inequality function. But

$$\log x \le 1 \Longleftrightarrow x \le e^1$$

• Consider

$$1 - x_1 x_2 \le 0, \quad x_1 \ge 0, \quad x_2 \ge 0$$

 $1 - x_1 x_2$ is non-convex. But we can replace it by

$$-\log x_1 - \log x_2 \le 0, \quad x_1 \ge 0, \quad x_2 \ge 0$$

Examples (Cont'd):

• The least 2-norm problem

$$\min \|Ax - b\|_2 \tag{(*)}$$

is equiv. to the LS problem $\min ||Ax - b||_2^2$.

In fact we want to avoid (*), which exhibits less desirable differentiation properties.

• Suppose that $P \succeq 0$. The problem

$$\max_{x \in C} \frac{1}{x^T P x}$$

is equivalent to

$$\min_{x \in C} x^T P x$$

Example: maximum-likelihood (ML) estimation of mean

Likelihood function for m Gaussian samples with mean μ and covariance Σ :

$$L(\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{nm}{2}} (\det \Sigma)^{\frac{m}{2}}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{m} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\right\}$$

Given $\Sigma,$ the ML estimation of μ is

$$\max_{\mu} L(\mu, \Sigma)$$

We often put logarithm on $L(\mu,\Sigma)$ to obtain an equiv. but convex problem

$$\max_{\mu} \log L(\mu, \Sigma) \propto \max_{\mu} - \sum_{i=1}^{m} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)$$

Equivalent Problem: Change of Variables

Suppose $\phi : \mathbf{R}^n \to \mathbf{R}^n$ is one-to-one with image covering the problem domain. Define

$$\tilde{f}_i(z) = f_i(\phi(z)), i = 0, \dots, m, \quad \tilde{h}_i(z) = h_i(\phi(z)), i = 1, \dots, p$$

A standard problem is equivalent to

min
$$\tilde{f}_0(z)$$

s.t. $\tilde{f}_i(z) \le 0$, $i = 1, \dots, m$
 $\tilde{h}_i(z) = 0$, $i = 1, \dots, p$

Example: ML estimation of covariance

Consider the log likelihood in the last example, which can be expressed as

$$\log L(\mu, \Sigma) \propto -\frac{m}{2} \log \det \Sigma - \frac{m}{2} \operatorname{tr}(\hat{C}_{\mu} \Sigma^{-1})$$

where $\hat{C}_{\mu} = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu) (x_i - \mu)^T$.

Given $\mu\text{, the ML}$ estimation of Σ is

$$\max_{\Sigma \succ 0} - \log \det \Sigma - \mathbf{tr}(\hat{C}_{\mu} \Sigma^{-1})$$

which can be shown to have a nonconcave objective function.

Let $\Psi = \Sigma^{-1} \succ 0$. The ML problem is equiv. to

$$\max_{\Psi \succ 0} \log \det \Psi - \mathbf{tr}(\hat{C}_{\mu} \Psi)$$

which is a convex problem.

<u>More about ML mean and covariance estimation</u> Joint ML estimation of μ and Σ :

$$\max_{\substack{\mu,\Psi=\Sigma^{-1}\succ 0\\\Psi\succ 0}} \underbrace{\log \det \Psi - \operatorname{tr}(\hat{C}_{\mu}\Psi)}_{\triangleq f_{0}(\mu,\Psi)}$$

Consider the inner maximization given Ψ :

$$\nabla_{\mu} f_0 = -\frac{1}{m} \sum_{i=1}^m \Psi x_i - \Psi \mu$$
$$\iff \arg \max_{\mu} f_0(\mu, \Psi) = \frac{1}{m} \sum_{i=1}^m x_i \triangleq \hat{\mu}$$

A neat result is that $\hat{\mu}$ does not depend on Ψ .

Putting the optimal μ back to the ML problem

$$\max_{\Psi \succ 0} \log \det \Psi - \mathbf{tr}(\hat{C}_{\hat{\mu}} \Psi)$$

Using

$$\nabla_{\Psi} f_0 = \Psi^{-1} - \hat{C}_{\mu},$$

we arrive at

$$\hat{\Sigma} = \hat{\Psi}^{-1} = \hat{C}_{\hat{\mu}},$$

assuming that $\hat{C}_{\hat{\mu}} \succ 0$.

Remark: the sampled mean and covariance are indeed the ML estimates, under the Gaussian assumption.

Question: $f_0(\mu, \Psi)$ is concave in either μ or $\Psi \succ 0$, but is it concave in μ and $\Psi \succ 0$?

Standard Form with Generalized Inequalities

A convex problem with generalized inequalities:

min $f_0(x)$ s.t. $f_i(x) \preceq_{K_i} 0, \quad i = 1, \dots, L$ Ax = b

where

- \leq_{K_i} are generalized inequalities on \mathbf{R}^m ,
- $f_i : \mathbf{R}^n \to \mathbf{R}^m$ are K_i -convex.

Examples

• Second order cone program:

min
$$c_0^T x$$

s.t. $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$
 $Fx = g$

• Semidefinite program:

min
$$\mathbf{tr}(CX)$$

s.t. $X \succeq 0$
 $\mathbf{tr}(A_i X) = b_i, \quad i = 1, \dots, p$

Quasiconvex Optimization

A quasiconvex opt. problem has a standard form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

where $f_0(x)$ is quasiconvex, and $f_i(x)$ convex for i > 1.

• A quasiconvex problem can have locally optimal points

• A point $x \in C$ is optimal if

$$\nabla f_0(x)^T(y-x) > 0, \ \forall y \in C$$

But the converse is not always true.

Let $\phi_t : \mathbf{R}^n \to \mathbf{R}$, $t \in \mathbf{R}$, be a family of convex functions that satisfy

 $f_0(x) \le t \Longleftrightarrow \phi_t(x) \le 0$

and also, for each x, $\phi_s(x) \leq \phi_t(x)$ whenever $s \leq t$.

Fixing a *t*, the following feasibility problem is convex

find xs.t. $\phi_t(x) \le 0$, $f_i(x) \le 0$, $i = 1, \dots, m$ Ax = b

Idea: decrease t until the convex feasibility problem is infeasible.

Assume that p^{\star} is known to lie within $[\ell, u]$.

Bisection method for quasiconvex optimization

given bounds ℓ , u, and tolerance ϵ .

repeat

- 1. $t := (\ell + u)/2$.
- 2. Solve the convex feasibility problem.
- 3. if the problem is feasible, u := t; otherwise $\ell := t$.

until $u - \ell \leq \epsilon$.