Convex Functions

Wing-Kin (Ken) Ma
The Chinese University of Hong Kong (CUHK)

Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma National Chiao Tung Univ., Hsinchu, Taiwan

December 19-21, 2008

Convex Functions

A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is said to be convex if
i) $\operatorname{dom} f$ is convex; and
ii) for any $x, y \in \operatorname{dom} f$ and $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- f is strictly convex if $f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)$ for all $0<\theta<1$ and for all $x \neq y$.
- f is concave if $-f$ is convex.

1st and 2nd Order Conditions

- Gradient (for differentiable f)

$$
\nabla f(x)=\left[\frac{\partial f(x)}{\partial x_{1}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right]^{T} \in \mathbf{R}^{n}
$$

- Hessian (for twice differentiable f): A matrix function $\nabla^{2} f(x) \in \mathbf{S}^{n}$ in which

$$
\left[\nabla^{2} f(x)\right]_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

- Taylor series:

$$
f(x+\nu)=f(x)+\nabla f(x)^{T} \nu+\frac{1}{2} \nu^{T} \nabla^{2} f(x) \nu+\ldots
$$

- First-order condition: A differentiable f is convex iff given any $x_{0} \in \operatorname{dom} f$,

$$
f(x) \geq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right), \quad \forall x \in \operatorname{dom} f
$$

- Second-order condition: A twice differentiable f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0, \quad \forall x \in \operatorname{dom} f
$$

Examples on R

- $a x+b$ is convex. It is also concave.
- x^{2} is convex (on \mathbf{R}).
- $|x|$ is convex.
- $e^{\alpha x}$ is convex.
- $\log x$ is concave on \mathbf{R}_{++}.
- $x \log x$ is convex on \mathbf{R}_{+}.
- $\log \int_{-\infty}^{x} e^{-t^{2} / 2} d t$ is concave.

Examples on \mathbf{R}^{n}

Affine function

$$
f(x)=a^{T} x+b=\sum_{i=1}^{n} a_{i} x_{i}+b
$$

is both convex and concave.

Quadratic function

$$
f(x)=x^{T} P x+2 q^{T} x+r=\sum_{i=1}^{n} \sum_{j=1}^{n} P_{i j} x_{i} x_{j}+2 \sum_{i=1}^{n} q_{i} x_{i}+r
$$

is convex if and only if $P \succeq 0$.

(a) $P \succeq 0$.

(b) $P \nsucceq 0$.
p-norm

$$
f(x)=\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

is convex for $p \geq 1$.

(a) Region of $\|x\|_{p}=1, p \geq 1$.

(b) Region of $\|x\|_{p}=1, p \leq 1$.

Geometric mean

$$
f(x)=\prod_{i=1}^{n} x_{i}
$$

is concave on \mathbf{R}_{++}^{n}.
Log-sum-exp.

$$
f(x)=\log \left(\sum_{i=1}^{n} e^{x_{i}}\right)
$$

is convex on \mathbf{R}^{n}. (Log-sum-exp. can be used as an approx. to $\max _{i=1, \ldots, n} x_{i}$)

Examples on \mathbf{S}^{n} (intuitively less obvious)

Affine function:

$$
f(X)=\operatorname{tr}(A X)+b=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{j i} X_{i j}+b
$$

is convex and concave.
Logarithmetic determinant function:

$$
f(X)=\log \operatorname{det}(X)
$$

is concave on \mathbf{S}_{++}^{n}.
Maximum eigenvalue function:

$$
f(X)=\lambda_{\max }(X)=\sup _{y \neq 0} \frac{y^{T} X y}{y^{T} y}
$$

is convex on \mathbf{S}^{n}.

Convexity Preserving Operations

Affine transformation of the domain:

$$
f \text { convex } \Longrightarrow f(A x+b) \text { convex }
$$

Example: (Least squares function)

$$
f(x)=\|y-A x\|_{2}
$$

is convex, since $f(x)=\|\cdot\|_{2}$ is convex.
Example: (MIMO capacity)

$$
f(X)=\log \operatorname{det}\left(H X H^{T}+I\right)
$$

is concave on \mathbf{S}_{+}^{n}, since $f(X)=\log \operatorname{det}(X)$ is concave on \mathbf{S}_{++}^{n}.

Composition: Let $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$.
g convex, h convex, extended h nondecreasing $\Longrightarrow f(x)=h(g(x))$ convex
g concave, h convex, extended h nonincreasing $\Longrightarrow f(x)=h(g(x))$ convex

Example:

$$
f(x)=\|y-A x\|_{2}^{2}
$$

is convex by composition, where $g(x)=\|y-A x\|_{2}, h(x)=\max \left\{0, x^{2}\right\}$.

Non-negative weighted sum:

$$
\begin{aligned}
& f_{1}, \ldots, f_{m} \text { convex } \\
& w_{1}, \ldots, w_{m} \geq 0
\end{aligned} \Longrightarrow \sum_{i=1}^{m} w_{i} f_{i} \text { convex }
$$

Example: Regularized least squares function

$$
f(x)=\|y-A x\|_{2}^{2}+\gamma\|x\|_{2}^{2}
$$

is convex for $\gamma \geq 0$.

Extension of non-negative weighted sum:

$$
\begin{aligned}
& f(x, y) \text { convex in } x \text { for each } y \in \mathcal{A} \\
& w(y) \geq 0 \text { for each } y \in \mathcal{A}
\end{aligned} \Longrightarrow \int_{\mathcal{A}} w(y) f(x, y) d y \text { convex }
$$

Example: Ergodic MIMO capacity

$$
f(x)=\mathbf{E}_{H}\left\{\log \operatorname{det}\left(H X H^{T}+I\right)\right\}\left(=\int p(H) \log \operatorname{det}\left(H X H^{T}+I\right) d H\right)
$$

is concave on \mathbf{S}_{+}^{n}.

Pointwise maximum:

$$
f_{1}, \ldots, f_{m} \text { convex } \Longrightarrow f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\} \text { convex }
$$

Example: Infinity norm

$$
f(x)=\|x\|_{\infty}=\max _{i=1, \ldots, m}\left|x_{i}\right|
$$

is convex because $f(x)=\max \left\{x_{1},-x_{1}, x_{2},-x_{2}, \ldots, x_{n},-x_{n}\right\}$.

Pointwise supremum:

$$
f(x, y) \text { convex in } x \text { for each } y \in \mathcal{A} \Longrightarrow \sup _{y \in \mathcal{A}} f(x, y) \text { convex }
$$

Example: Worst-case least squares function

$$
f(x)=\max _{E \in \mathcal{E}}\|y-(A+E) x\|_{2}^{2}
$$

is convex. (\mathcal{E} does not even need to be convex!)

Jensen's Inequality

- The basic inequality for convex f

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

is also called Jensen's inequality.

- It can be extended to

$$
f\left(\sum_{i=1}^{k} \theta_{k} x_{k}\right) \leq \sum_{i=1}^{k} \theta_{k} f\left(x_{k}\right)
$$

where $\theta_{1}, \ldots, \theta_{k} \geq 0$, and $\sum_{i=1}^{k} \theta_{k}=1$; and to

$$
f\left(\int_{S} p(x) x d x\right) \leq \int_{S} p(x) f(x) d x
$$

where $p(x) \geq 0$ on $S \subseteq \operatorname{dom} f$, and $\int_{S} p(x) d x=1$.

Inequalities derived from Jensen's inequality:

- Arithmetic-geometric inequality: $\sqrt{a b} \leq(a+b) / 2$ for $a, b \geq 0$
- Hadamard inequality: $\operatorname{det} X \leq \prod_{i=1}^{n} X_{i i}$ for $X \in \mathbf{S}_{+}^{n}$
- Kullback-Leiber divergence: Let $p(x), q(x)$ be PDFs on S,

$$
\int_{S} p(x) \log \left(\frac{p(x)}{q(x)}\right) d x \geq 0
$$

- Hölder inequality:

$$
x^{T} y \leq\|x\|_{p}\|x\|_{q}
$$

where $1 / p+1 / q=1, p>1$.

Epigraph

The epigraph of f is

$$
\operatorname{epi} f=\{(x, t) \mid x \in \operatorname{dom} f, f(x) \leq t\}
$$

A powerful property:

$$
f \text { convex } \Longleftrightarrow \text { epi } f \text { convex }
$$

e.g., some convexity preserving properties can be proven quite easily by epigraph.

Sublevel Sets

The α-sublevel set of f

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

f convex $\Longrightarrow S_{\alpha}$ convex for every α, but S_{α} convex for every $\alpha \nRightarrow f$ convex

convex f and convex S_{α}

non-convex f but convex S_{α}

Quasiconvex Functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is called quasiconvex (or unimodal) if $\operatorname{dom} f$ is convex and every S_{α} is convex.

- If f is convex then f is quasiconvex (by the definition).
- f is called quasiconcave if $-f$ is quasiconvex.
- f is called quasilinear if f is quasiconvex and quasiconcave.

Example: Linear fractional function (useful in modeling SINR)

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}
$$

is quasiconvex on $\left\{x \mid c^{T} x+d>0\right\}$, because

$$
S_{\alpha}=\left\{x \mid a^{T} x+b \leq t\left(c^{T} x+d\right)\right\}
$$

is a hyperplane. In fact it is also quasiconcave.

