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Convex Functions

A function f : R™ — R is said to be convex if

i) domf is convex; and

ii) for any z,y € domf and 0 € [0, 1],

flz+(1—-0)y) <0f(x)+(1—0)f(y)

(y, f(y))

(z, f(z))
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e f is strictly convex if f(0x+ (1—0)y) <O0f(x)+(1—-0)f(y) forall0 <6 < 1
and for all = # y.

e f is concave if —f is convex.

strictly convex

convex
(and of course convex)

non-convex

W.-K. Ma 2



1st and 2nd Order Conditions

e Gradient (for differentiable f)

N T )

= e e R"
(95131 &vn

e Hessian (for twice differentiable f): A matrix function VZf(x) € S™ in which

_ Pf(x)
B 8331833]

(V2 f(2)];;

e Taylor series:

flea+v)=fl@)+ V() v+ "' Vi@ +...
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e First-order condition: A differentiable f is convex iff given any xy € domf,
f(x) > f(zo) + Vf(zo)' (z —20), V€ domf
f(x)

f(zg) + Vf(zg) L (z — 2q)

I T

Lo
e Second-order condition: A twice differentiable f is convex if and only if

V2f(z) =0, Vzc domf
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Examples on R

e axr + b is convex. It is also concave.

e 77 is convex (on R).
e |x| is convex.

T |s convex.

e c
e logx is concave on R ;.

e rlogx is convex on R.

o log [ e~t"/24dt is concave.
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Examples on R"

Affine function

Is both convex and concave.
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Quadratic function

n

flx) =2l Pr+2¢" 2 +1r = Z Z Pijzix; + 2

is convex if and only if P > 0.
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p-norm

1
n p
f@) =Nl = | > |zl
1=1
is convex for p > 1.

i} o p=0o0 L p=0.9
o8l / p — 2 el ) p — 0.3
06l 1 p — 1 o : p — O.].
(a) Region of ||z||, =1, p > 1. (b) Region of ||z||, =1, p < 1.
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Geometric mean

. n
IS concave on R++.
Log-sum-exp.

flz) =log ) e"
1=1

is convex on R™. (Log-sum-exp. can be used as an approx. to _max ;)
i=1,....n
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Examples on S™ (intuitively less obvious)
Affine function:

FX)=tr(AX)+b=) Y A;X;;+b
i=1 j=1

Is convex and concave.

Logarithmetic determinant function:
f(X) =logdet(X)
Is concave on S”/ | .

Maximum eigenvalue function:

T
X
F(X) = Anax(X) = sup 22
yZ0 Y Y

Is convex on S".
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Convexity Preserving Operations

Affine transformation of the domain:

f convex = f(Ax + b) convex

Example: (Least squares function)

flx) = lly — Azll

is convex, since f(x) = || - ||2 is convex.

Example: (MIMO capacity)

f(X)=logdet(HXH” + 1)

is concave on S, since f(X) =logdet(X) is concave on S” _ .
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Composition: Let g: R" — R and h: R — R.
g convex, h convex, extended h nondecreasing = f(x) = h(g(x)) convex

g concave, h convex, extended h nonincreasing =—> f(x) = h(g(x)) convex

Example:
f(z) = lly — Az|)3

is convex by composition, where g(z) = ||y — Azx|2, h(x) = max{0, 2*}.
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Non-negative weighted sum:

m
ce. convex
fl’ ’ fm — Z wzfz convex

Wi, ..., Wy > 0

Example: Regularized least squares function

1=1

f(x) = |ly — Az||5 + v||z||5

is convex for v > 0.

Extension of non-negative weighted sum:

f(x,y) convex in x for each y € A
w(y) > 0 for each y € A

Example: Ergodic MIMO capacity
f(z) = Eg{logdet(HXH' + 1)}

IS concave on SE.

:>/ w(y) f(x,y)dy convex
A
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Pointwise maximum:

fi,.- ., fm convex => f(x) = max{fi(x),..., fm(z)} convex

Example: Infinity norm

is convex because f(x) = max{zi, —z1,%2, —T2, ..., Ty, —Tn}.

Pointwise supremum:

f(z,y) convex in x for each y € A = sup f(x,y) convex
ycA

Example: Worst-case least squares function

f(x) = max [ly — (A + E)zl3

is convex. (€ does not even need to be convex!)
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Jensen’s Inequality

e The basic inequality for convex f

fl0r+(1—-0)y) <0f(z)+ (1-0)f(y)
is also called Jensen’s inequality.

e |t can be extended to

where 64,...,0, > 0, and Z,’f:l 0, = 1; and to

f ( / p(w)xdx) < [ pla)f(a)da

where p(z) > 0 on S C domf, and [ p(z)dx = 1.
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Inequalities derived from Jensen’s inequality:

e Arithmetic-geometric inequality: vab < (a + b)/2 for a,b >0
e Hadamard inequality: det X < []._, X;; for X € S

e Kullback-Leiber divergence: Let p(x), g(z) be PDFs on S,

[ ptayiog (B2 do =0

z'y < [lzllplzlg

e Holder inequality:

where 1/p+1/qg=1,p > 1.
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Epigraph

The epigraph of f is

epif = {(z,1) | = € domf, f(x) < t}

A powerful property:
f convex <= epif convex

e.g., some convexity preserving properties can be proven quite easily by epigraph.

t f(z)

epif
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Sublevel Sets

The a-sublevel set of f
So = {w € domf | f(z) < a}

f convex = S, convex for every a, but S, convex for every a = f convex

f(x) f(x)

S Sa

convex f and convex S, non-convex f but convex S,
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Quasiconvex Functions

f:R"™ — R is called quasiconvex (or unimodal) if domf is convex and every S,
IS convex.

e If f is convex then f is quasiconvex (by the definition).
e f is called quasiconcave if —f is quasiconvex.

e f is called quasilinear if f is quasiconvex and quasiconcave.

Example: Linear fractional function (useful in modeling SINR)

_aTx—l—b

A

is quasiconvex on {x | cI'z + d > 0}, because
So={z|a'z+b<tlc'z+d)}

is a hyperplane. In fact it is also quasiconcave.
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