Convex Sets

Wing-Kin (Ken) Ma
The Chinese University of Hong Kong (CUHK)

Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma National Chiao Tung Univ., Hsinchu, Taiwan

December 19-21, 2008

Convex Sets

A set $C \subseteq \mathbf{R}^{n}$ is said to be convex if, for any $x, y \in C$,

$$
\theta x+(1-\theta) y \in C
$$

for any $0 \leq \theta \leq 1$.

convex

non-convex

- The line segment of any two points in C has to be in C, in order to be convex.

Examples of Convex Sets

Hyperplane:

$$
C=\left\{x \mid a^{T} x=b\right\}
$$

where $a \in \mathbf{R}^{n}, \& b \in \mathbf{R}$.
Halfspace:

$$
C=\left\{x \mid a^{T} x \leq b\right\}
$$

Polyhedron:

$$
C=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m, c_{i}^{T} x=d_{i}, i=1, \ldots, p\right\}
$$

For convenience we use matrix notations to represent a polyhedron:

$$
C=\{x \mid A x \preceq b, C x=d\}
$$

where $A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, b \in \mathbf{R}^{m}, d \in \mathbf{R}^{p}, \& \preceq$ denotes elementwise inequality.

Convex hull of a set of points $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$:
$C=\operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}=\left\{x=\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \theta_{1}+\ldots+\theta_{k}=1, \theta_{1}, \ldots, \theta_{k} \geq 0\right\}$

- The set of all convex combinations of $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$
- $\operatorname{conv}\left\{x_{1}, \ldots, x_{k}\right\}$ is a polyhedron. (vice versa is true if polyhedron is bounded)

(a) Convex hull where only some of the $x_{1}, x_{2}, \ldots, x_{k}$ are vertices.

(b) Convex hull where all x_{1}, \ldots, x_{k} are vertices.
- $x \in C$ is an extreme point or vertex of C if $x \neq \sum_{i=1}^{k} \theta_{i} x_{i}$ for any $\theta_{1}+\ldots+\theta_{k}=$ $1, \theta_{1}, \ldots, \theta_{k} \geq 0, \theta_{i} \neq 1$ for any i.

Euclidean ball:

$$
\begin{aligned}
B\left(x_{c}, r\right) & =\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\} \\
& =\left\{x \mid \sqrt{\sum_{i=1}^{n}\left(x_{i}-x_{c, i}\right)^{2}} \leq r\right\}
\end{aligned}
$$

Ellipsoid:

$$
\mathcal{E}\left(x_{c}, P\right)=\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

where $P \in \mathbf{S}^{n}$ ($\mathbf{S}^{n}=$ the set of $n \times n$ symmetric matrices), and P is positive semidefinite.

Symmetric eigendecomposition of P :

$$
P=Q \Lambda Q^{T}
$$

- The eigenvector matrix $Q\left(Q \in \mathbf{R}^{n \times n}, Q^{T} Q=I\right)$ controls the rotation;
- The eigenvalue matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ controls the lengths of the semi-axes.

Convex Cones

A set $C \subseteq \mathbf{R}^{n}$ is said to be a convex cone if, for any $x, y \in C$,

$$
\theta_{1} x+\theta_{2} y \in C
$$

for any $\theta_{1}, \theta_{2} \geq 0$.

- A convex cone is a convex set.

Examples of Convex Cones

Second-order cone (SOC) (aka Lorentz cone, or ice-cream cone):

$$
K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}
$$

Positive semidefinite (PSD) cone:

$$
\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}
$$

where $X \succeq 0$ means that X is PSD; i.e.,

$$
z^{T} X z \geq 0, \quad \text { for all } z \in \mathbf{R}^{n}
$$

Positive definite (PD) cone:

$$
\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\}
$$

where $X \succ 0$ means that X is PD; i.e.,

$$
z^{T} X z>0, \quad \text { for all } z \in \mathbf{R}^{n} /\{0\}
$$

Example: $n=2$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right] } \succeq 0 \\
& \Longleftrightarrow x_{1} x_{3}-x_{2}^{2} \geq 0 \\
& x_{1} \geq 0, x_{3} \geq 0
\end{aligned}
$$

Convexity Preserving Operations

Intersection:

$$
S_{1}, S_{2}, \ldots S_{k} \text { convex } \Longleftrightarrow S_{1} \cap S_{2} \cap \ldots \cap S_{k} \text { convex }
$$

Example: Polyhedron

$$
C=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m, c_{i}^{T} x=d_{i}, i=1, \ldots, p\right\}
$$

is convex, because it is an intersection of halfspaces $\left\{x \mid a_{i}^{T} x \leq b_{i}\right\}$ and hyperplanes $\left\{x \mid c_{i}^{T} x=d_{i}\right\}$.

Extension of Intersection:

$$
S_{\alpha} \text { convex for every } \alpha \in \mathcal{A} \Longleftrightarrow \bigcap_{\alpha \in \mathcal{A}} S_{\alpha} \text { convex }
$$

Example: Filter mask

- Let $\left\{h_{-n}, \ldots, h_{-1}, h_{0}, h_{1} \ldots, h_{n}\right\}$ be a set of FIR filter coefficients. Assume $h_{-i}=h_{i}$ (linear phase).
- The frequency response

$$
\begin{aligned}
H(\omega) & =\sum_{i=-n}^{n} h_{i} e^{-j \omega i} \\
& =h_{0}+2 \sum_{i=1}^{n} h_{i} \cos (\omega i)
\end{aligned}
$$

- The set

$$
\mathcal{H}=\left\{\left(h_{0}, \ldots, h_{n}\right) \in \mathbf{R}^{n+1}| | H(\omega) \mid \leq U(\omega), \omega_{1} \leq \omega \leq \omega_{2}\right\}
$$

where $U(\omega) \geq 0$, is convex because

$$
\mathcal{H}=\bigcap_{\omega_{1} \leq \omega \leq \omega_{2}} \underbrace{\left\{\left(h_{0}, \ldots, h_{n}\right) \in \mathbf{R}^{n+1} \mid-U(\omega) \leq H(\omega) \leq U(\omega)\right\}}_{\text {polyhedral for each } \omega}
$$

Affine function: Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine; i.e.,

$$
f(x)=A x+b
$$

where $A \in \mathbf{R}^{m \times n}$, and $b \in \mathbf{R}^{m}$.

$$
\begin{aligned}
& S \text { convex } \Longrightarrow f(S)=\{f(x) \mid x \in S\} \text { convex } \\
& C \text { convex } \Longrightarrow f^{-1}(C)=\left\{x \in \mathbf{R}^{n} \mid f(x) \in C\right\} \text { convex }
\end{aligned}
$$

Example: $\left\{(y, t) \in \mathbf{R}^{m+1} \mid\|y\|_{2} \leq t\right\}$ is convex, so

$$
\left\{x \in \mathbf{R}^{n} \mid\|A x+b\|_{2} \leq c^{T} x+d\right\}
$$

is convex.
Example: Set of linear matrix inequalities (LMI)

$$
\left\{x \in \mathbf{R}^{n} \mid A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \preceq 0\right\}
$$

where $A_{i} \in \mathbf{S}^{m}$, is convex, since it is an inverse image of $\mathbf{S}_{+}^{m}=\{Y \mid Y \succeq 0\}$.

Generalized Inequalities

A convex cone K is a proper cone if

- K is closed (has boundary)
- K is solid (has nonempty interior)
- K is pointed $(x \in K,-x \in K \Longrightarrow x=0)$
(Important) examples:
- nonnegative orthant $K=\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- SOC $K=\left\{(x, t) \in \mathbf{R}^{n+1} \mid\|x\|_{2} \leq t\right\}$
- PSD cone $K=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$

Generalized inequality defined by a proper cone K :

$$
\begin{aligned}
& x \preceq_{K} y \Longleftrightarrow y-x \in K \\
& x \prec_{K} y \Longleftrightarrow y-x \in \operatorname{int} K \quad \text { (strict ineq.) }
\end{aligned}
$$

For example, for $K=\mathbf{R}_{+}^{n}$,

$$
x \preceq_{K} y \Longleftrightarrow x_{i} \leq y_{i}, \quad i=1, \ldots, n
$$

Properties of \preceq_{K} are generally the same as those of \leq on \mathbf{R}; e.g.,

$$
\begin{aligned}
x \preceq_{K} y, y \preceq_{K} z & \Longrightarrow x \preceq_{K} z \\
x \preceq_{K} 0, x \succeq_{k} 0 & \Longrightarrow x=0
\end{aligned}
$$

Schur Complement

- Consider

$$
X=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right]
$$

and assume $C \succ 0$.

- $A-B C^{-1} B^{T}$ is called the Schur complement. Important property:

$$
X \succeq 0 \Longleftrightarrow A-B C^{-1} B^{T} \succeq 0
$$

Example:

$$
C=\{(X, x) \in \mathbf{S}^{n} \times \mathbf{R}^{n} \mid \underbrace{X \succeq x x^{T}}_{\text {or } X-x x^{T} \text { PSD }}\}
$$

By Schur complement, C is equivalent to

$$
C=\left\{(X, x) \in \mathbf{S}^{n} \times \mathbf{R}^{n} \left\lvert\,\left[\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right] \succeq 0\right.\right\}
$$

- Schur complement is a useful tool. It shows that a no. of sets can be turned to an LMI sets.

Example: the Euclidean ball $C=\left\{x \in \mathbf{R}^{n} \mid\left\|x-x_{c}\right\|_{2} \leq 1\right\}$.

$$
\begin{aligned}
C & =\left\{x \mid\left(x-x_{c}\right)^{T}\left(x-x_{c}\right) \leq 1\right\} \\
& =\left\{x \mid 1-\left(x-x_{c}\right)^{T} I\left(x-x_{c}\right) \geq 0\right\} \\
& =\left\{x \left\lvert\,\left[\begin{array}{cc}
1 & \left(x-x_{c}\right)^{T} \\
x-x_{c} & I
\end{array}\right] \succeq 0\right.\right\}
\end{aligned}
$$

Example: An SOC $C=\left\{(x, t) \in \mathbf{R}^{n+1} \mid\|x\|_{2} \leq t, t>0\right\}$.

$$
\begin{aligned}
C & =\left\{(x, t) \mid\|x\|_{2}^{2} \leq t^{2}, t>0\right\} \\
& =\left\{(x, t) \left\lvert\, t-x^{T}\left(\frac{1}{t} I\right) x \geq 0\right., t>0\right\} \\
& =\left\{x \left\lvert\,\left[\begin{array}{cc}
t & x^{T} \\
x & t I
\end{array}\right] \succeq 0\right., t>0\right\} \quad \text { (Schur complement) }
\end{aligned}
$$

