Convex Sets

Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK)

Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma National Chiao Tung Univ., Hsinchu, Taiwan

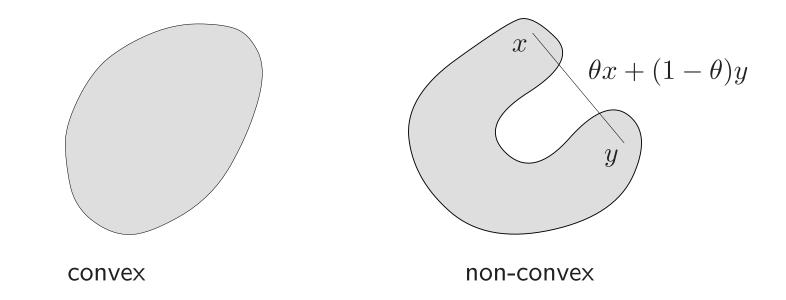
December 19-21, 2008

Convex Sets

A set $C \subseteq \mathbf{R}^n$ is said to be **convex** if, for any $x, y \in C$,

 $\theta x + (1 - \theta)y \in C$

for any $0 \le \theta \le 1$.



• The line segment of any two points in C has to be in C, in order to be convex.

Examples of Convex Sets

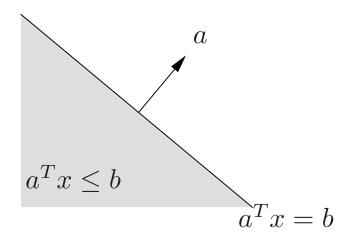
Hyperplane:

$$C = \{x \mid a^T x = b\}$$

where $a \in \mathbf{R}^n$, & $b \in \mathbf{R}$.

Halfspace:

$$C = \{x \mid a^T x \le b\}$$



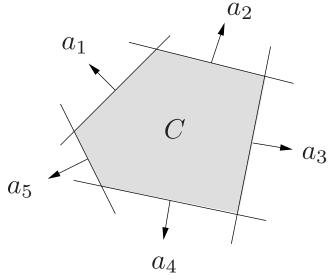
Polyhedron:

$$C = \{x \mid a_i^T x \le b_i, i = 1, \dots, m, c_i^T x = d_i, i = 1, \dots, p\}$$

For convenience we use matrix notations to represent a polyhedron:

$$C = \{x \mid Ax \preceq b, \ Cx = d\}$$

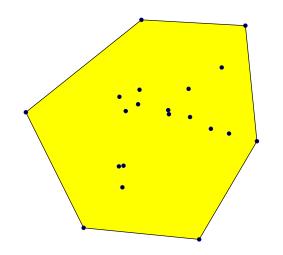
where $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^m$, $d \in \mathbb{R}^p$, & \leq denotes elementwise inequality.



Convex hull of a set of points $\{x_1, x_2, \ldots, x_k\}$:

 $C = \operatorname{conv}\{x_1, x_2, \dots, x_k\} = \{x = \theta_1 x_1 + \dots + \theta_k x_k \mid \theta_1 + \dots + \theta_k = 1, \ \theta_1, \dots, \theta_k \ge 0\}$

- The set of all convex combinations of $\{x_1, x_2, \ldots, x_k\}$
- $conv\{x_1, \ldots, x_k\}$ is a polyhedron. (vice versa is true if polyhedron is bounded)



Convex hull where all $r_{\rm c}$

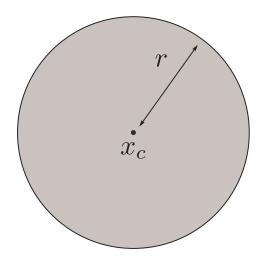
(a) Convex hull where only some of the x_1, x_2, \ldots, x_k are vertices.

(b) Convex hull where all x_1, \ldots, x_k are vertices.

• $x \in C$ is an **extreme point** or **vertex** of C if $x \neq \sum_{i=1}^{k} \theta_i x_i$ for any $\theta_1 + \ldots + \theta_k = 1, \theta_1, \ldots, \theta_k \ge 0, \ \theta_i \ne 1$ for any i.

Euclidean ball:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$
$$= \left\{x \mid \sqrt{\sum_{i=1}^n (x_i - x_{c,i})^2} \le r\right\}$$



Ellipsoid:

$$\mathcal{E}(x_c, P) = \{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \}$$

where $P \in \mathbf{S}^n$ (\mathbf{S}^n = the set of $n \times n$ symmetric matrices), and P is positive semidefinite.



Symmetric eigendecomposition of P:

$$P = Q\Lambda Q^T$$

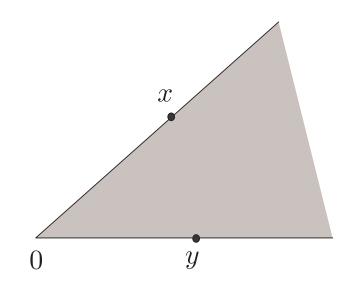
- The eigenvector matrix Q ($Q \in \mathbf{R}^{n \times n}$, $Q^T Q = I$) controls the rotation;
- The eigenvalue matrix $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$ controls the lengths of the semi-axes.

Convex Cones

A set $C \subseteq \mathbf{R}^n$ is said to be a **convex cone** if, for any $x, y \in C$,

 $\theta_1 x + \theta_2 y \in C$

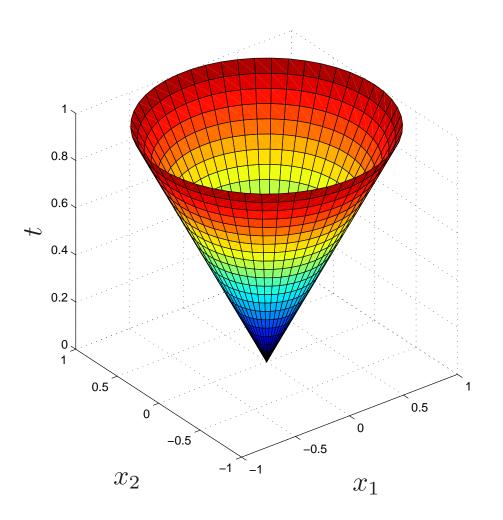
for any $\theta_1, \theta_2 \ge 0$.



Examples of Convex Cones

Second-order cone (SOC) (aka Lorentz cone, or ice-cream cone):

 $K = \{ (x, t) \mid ||x||_2 \le t \}$



Positive semidefinite (PSD) cone:

$$\mathbf{S}^n_+ = \{ X \in \mathbf{S}^n \mid X \succeq 0 \}$$

where $X \succeq 0$ means that X is PSD; i.e.,

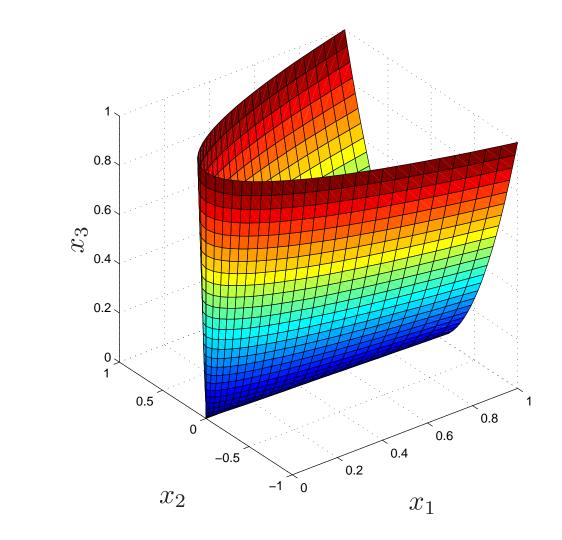
$$z^T X z \ge 0$$
, for all $z \in \mathbf{R}^n$

Positive definite (PD) cone:

$$\mathbf{S}_{++}^n = \{ X \in \mathbf{S}^n \mid X \succ 0 \}$$

where $X \succ 0$ means that X is PD; i.e.,

$$z^T X z > 0$$
, for all $z \in \mathbf{R}^n / \{0\}$



Example: n = 2

$$\begin{bmatrix} x_1 & x_2 \\ x_2 & x_3 \end{bmatrix} \succeq 0$$
$$\iff x_1 x_3 - x_2^2 \ge 0,$$
$$x_1 \ge 0, x_3 \ge 0$$

Convexity Preserving Operations

Intersection:

$$S_1, S_2, \ldots S_k$$
 convex $\iff S_1 \cap S_2 \cap \ldots \cap S_k$ convex

Example: Polyhedron

$$C = \{x \mid a_i^T x \le b_i, i = 1, \dots, m, \ c_i^T x = d_i, i = 1, \dots, p\}$$

is convex, because it is an intersection of halfspaces $\{x \mid a_i^T x \leq b_i\}$ and hyperplanes $\{x \mid c_i^T x = d_i\}$.

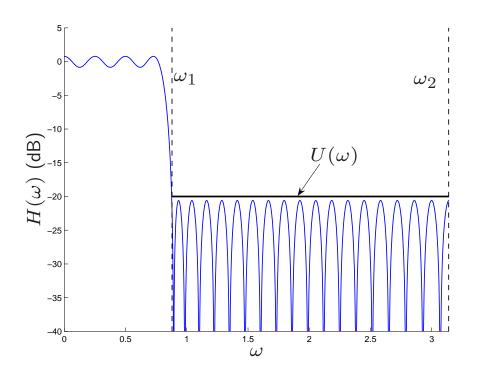
Extension of Intersection:

$$S_{\alpha}$$
 convex for every $\alpha \in \mathcal{A} \iff \bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ convex

Example: Filter mask

- Let $\{h_{-n}, \ldots, h_{-1}, h_0, h_1, \ldots, h_n\}$ be a set of FIR filter coefficients. Assume $h_{-i} = h_i$ (linear phase).
- The frequency response

$$H(\omega) = \sum_{i=-n}^{n} h_i e^{-j\omega i}$$
$$= h_0 + 2\sum_{i=1}^{n} h_i \cos(\omega i)$$



• The set

$$\mathcal{H} = \left\{ (h_0, \dots, h_n) \in \mathbf{R}^{n+1} \mid |H(\omega)| \le U(\omega), \ \omega_1 \le \omega \le \omega_2 \right\}$$

where $U(\omega) \ge 0$, is convex because

$$\mathcal{H} = \bigcap_{\omega_1 \le \omega \le \omega_2} \underbrace{\{(h_0, \dots, h_n) \in \mathbf{R}^{n+1} \mid -U(\omega) \le H(\omega) \le U(\omega)\}}_{\text{polyhedral for each } \omega}$$

Affine function: Suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine; i.e.,

$$f(x) = Ax + b$$

where $A \in \mathbf{R}^{m \times n}$, and $b \in \mathbf{R}^m$.

$$S \text{ convex} \Longrightarrow f(S) = \{f(x) \mid x \in S\} \text{ convex}$$
$$C \text{ convex} \Longrightarrow f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

Example: $\{(y,t) \in \mathbb{R}^{m+1} \mid ||y||_2 \le t\}$ is convex, so

$$\{x \in \mathbf{R}^n \mid ||Ax + b||_2 \le c^T x + d\}$$

is convex.

Example: Set of linear matrix inequalities (LMI)

$$\{x \in \mathbf{R}^n \mid A_0 + x_1 A_1 + \ldots + x_n A_n \preceq 0\}$$

where $A_i \in \mathbf{S}^m$, is convex, since it is an inverse image of $\mathbf{S}^m_+ = \{Y \mid Y \succeq 0\}$.

Generalized Inequalities

A convex cone K is a **proper cone** if

- *K* is closed (has boundary)
- *K* is solid (has nonempty interior)
- K is pointed $(x \in K, -x \in K \Longrightarrow x = 0)$

(Important) examples:

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- SOC $K = \{(x,t) \in \mathbf{R}^{n+1} \mid ||x||_2 \le t\}$
- PSD cone $K = \{X \in \mathbf{S}^n \mid X \succeq 0\}$

Generalized inequality defined by a proper cone *K*:

$$x \preceq_{K} y \iff y - x \in K$$
$$x \prec_{K} y \iff y - x \in \operatorname{int} K \quad (\operatorname{strict ineq.})$$

For example, for $K = \mathbf{R}^n_+$,

$$x \preceq_K y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

Properties of \leq_K are generally the same as those of \leq on \mathbf{R} ; e.g.,

Schur Complement

• Consider

$$X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$$

and assume $C \succ 0$.

• $A - BC^{-1}B^T$ is called the **Schur complement**. Important property:

$$X \succeq 0 \Longleftrightarrow A - BC^{-1}B^T \succeq 0$$

Example:

$$C = \{ (X, x) \in \mathbf{S}^n \times \mathbf{R}^n \mid \underbrace{X \succeq xx^T}_{\text{or } X - xx^T \text{ PSD}} \}$$

By Schur complement, ${\boldsymbol C}$ is equivalent to

$$C = \left\{ \begin{array}{cc} (X, x) \in \mathbf{S}^n \times \mathbf{R}^n \ \middle| \ \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0 \end{array} \right\}$$

• Schur complement is a useful tool. It shows that a no. of sets can be turned to an LMI sets.

Example: the Euclidean ball $C = \{x \in \mathbb{R}^n \mid ||x - x_c||_2 \le 1\}.$

$$C = \{x \mid (x - x_c)^T (x - x_c) \le 1\}$$

= $\{x \mid 1 - (x - x_c)^T I (x - x_c) \ge 0\}$
= $\left\{ \begin{array}{c} x \mid \begin{bmatrix} 1 & (x - x_c)^T \\ x - x_c & I \end{bmatrix} \ge 0 \end{array} \right\}$ (Schur complement)

Example: An SOC $C = \{(x, t) \in \mathbb{R}^{n+1} \mid ||x||_2 \le t, t > 0\}.$

$$C = \{(x,t) \mid ||x||_2^2 \le t^2, \ t > 0\}$$

= $\{(x,t) \mid t - x^T(\frac{1}{t}I)x \ge 0, \ t > 0\}$
= $\left\{ \begin{array}{c} x \mid \begin{bmatrix} t & x^T \\ x & tI \end{bmatrix} \succeq 0, \ t > 0 \end{array} \right\}$ (Schur complement)