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Convex Sets

A set C ⊆ R
n is said to be convex if, for any x, y ∈ C,

θx + (1 − θ)y ∈ C

for any 0 ≤ θ ≤ 1.

x

y

θx + (1 − θ)y

convex non-convex

• The line segment of any two points in C has to be in C, in order to be convex.

W.-K. Ma 1



Examples of Convex Sets

Hyperplane:
C = {x | aTx = b}

where a ∈ R
n, & b ∈ R.

Halfspace:
C = {x | aTx ≤ b}

a

aTx ≤ b

aTx = b

W.-K. Ma 2



Polyhedron:

C = {x | aT
i x ≤ bi, i = 1, . . . , m, cT

i x = di, i = 1, . . . , p}

For convenience we use matrix notations to represent a polyhedron:

C = {x | Ax � b, Cx = d}

where A ∈ R
m×n, C ∈ R

p×n, b ∈ R
m, d ∈ R

p, & � denotes elementwise
inequality.
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Convex hull of a set of points {x1, x2, . . . , xk}:

C = conv{x1, x2, . . . , xk} = {x = θ1x1+. . .+θkxk | θ1+. . .+θk = 1, θ1, . . . , θk ≥ 0}

• The set of all convex combinations of {x1, x2, . . . , xk}

• conv{x1, . . . , xk} is a polyhedron. (vice versa is true if polyhedron is bounded)

(a) Convex hull where only some of

the x1, x2, . . . , xk are vertices.

(b) Convex hull where all x1, . . . , xk

are vertices.

• x ∈ C is an extreme point or vertex of C if x 6=
∑k

i=1 θixi for any θ1+. . .+θk =
1, θ1, . . . , θk ≥ 0, θi 6= 1 for any i.
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Euclidean ball:

B(xc, r) = {x | ‖x − xc‖2 ≤ r}

=

{

x

∣
∣
∣
∣

√
√
√
√

n∑

i=1

(xi − xc,i)2 ≤ r

}

xc

r
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Ellipsoid:

E(xc, P ) = {x | (x − xc)
TP−1(x − xc) ≤ 1}

where P ∈ S
n (Sn = the set of n × n symmetric matrices), and P is positive

semidefinite.

xc

λ1

λ2

Symmetric eigendecomposition of P :

P = QΛQT

• The eigenvector matrix Q (Q ∈ R
n×n, QTQ = I) controls the rotation;

• The eigenvalue matrix Λ = diag(λ1, . . . , λn) controls the lengths of the semi-axes.
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Convex Cones

A set C ⊆ R
n is said to be a convex cone if, for any x, y ∈ C,

θ1x + θ2y ∈ C

for any θ1, θ2 ≥ 0.

x

y0

• A convex cone is a convex set.
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Examples of Convex Cones

Second-order cone (SOC) (aka Lorentz cone, or ice-cream cone):

K = {(x, t) | ‖x‖2 ≤ t}
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Positive semidefinite (PSD) cone:

S
n
+ = {X ∈ S

n | X � 0}

where X � 0 means that X is PSD; i.e.,

zTXz ≥ 0, for all z ∈ R
n

Positive definite (PD) cone:

S
n
++ = {X ∈ S

n | X ≻ 0}

where X ≻ 0 means that X is PD; i.e.,

zTXz > 0, for all z ∈ R
n/{0}
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Example: n = 2

[
x1 x2

x2 x3

]

� 0

⇐⇒x1x3 − x2
2 ≥ 0,

x1 ≥ 0, x3 ≥ 0
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Convexity Preserving Operations

Intersection:

S1, S2, . . . Sk convex ⇐⇒ S1 ∩ S2 ∩ . . . ∩ Sk convex

Example: Polyhedron

C = {x | aT
i x ≤ bi, i = 1, . . . , m, cT

i x = di, i = 1, . . . , p}

is convex, because it is an intersection of halfspaces {x | aT
i x ≤ bi} and hyperplanes

{x | cT
i x = di}.

Extension of Intersection:

Sα convex for every α ∈ A ⇐⇒
⋂

α∈A

Sα convex
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Example: Filter mask

• Let {h−n, . . . , h−1, h0, h1 . . . , hn} be
a set of FIR filter coefficients.
Assume h−i = hi (linear phase).

• The frequency response

H(ω) =
n∑

i=−n

hie
−jωi

= h0 + 2
n∑

i=1

hi cos(ωi)
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• The set

H =
{
(h0, . . . , hn) ∈ R

n+1
∣
∣ |H(ω)| ≤ U(ω), ω1 ≤ ω ≤ ω2

}

where U(ω) ≥ 0, is convex because

H =
⋂

ω1≤ω≤ω2

{
(h0, . . . , hn) ∈ R

n+1
∣
∣ − U(ω) ≤ H(ω) ≤ U(ω)

}

︸ ︷︷ ︸

polyhedral for each ω
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Affine function: Suppose f : Rn → R
m is affine; i.e.,

f(x) = Ax + b

where A ∈ R
m×n, and b ∈ R

m.

S convex =⇒ f(S) = {f(x) | x ∈ S} convex

C convex =⇒ f−1(C) = {x ∈ R
n | f(x) ∈ C} convex

Example: {(y, t) ∈ R
m+1 | ‖y‖2 ≤ t} is convex, so

{x ∈ R
n | ‖Ax + b‖2 ≤ cTx + d}

is convex.

Example: Set of linear matrix inequalities (LMI)

{x ∈ R
n | A0 + x1A1 + . . . + xnAn � 0}

where Ai ∈ S
m, is convex, since it is an inverse image of S

m
+ = {Y | Y � 0}.
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Generalized Inequalities

A convex cone K is a proper cone if

• K is closed (has boundary)

• K is solid (has nonempty interior)

• K is pointed (x ∈ K,−x ∈ K =⇒ x = 0)

(Important) examples:

• nonnegative orthant K = R
n
+ = {x ∈ R

n | xi ≥ 0, i = 1, . . . , n}

• SOC K = {(x, t) ∈ R
n+1 | ‖x‖2 ≤ t}

• PSD cone K = {X ∈ S
n | X � 0}
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Generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K

x ≺K y ⇐⇒ y − x ∈ intK (strict ineq.)

For example, for K = R
n
+,

x �K y ⇐⇒ xi ≤ yi, i = 1, . . . , n

Properties of �K are generally the same as those of ≤ on R; e.g.,

x �K y, y �K z =⇒ x �K z

x �K 0, x �k 0 =⇒ x = 0

W.-K. Ma 15



Schur Complement

• Consider

X =

[
A B
BT C

]

and assume C ≻ 0.

• A − BC−1BT is called the Schur complement. Important property:

X � 0 ⇐⇒ A − BC−1BT � 0

Example:
C = {(X,x) ∈ S

n × R
n | X � xxT

︸ ︷︷ ︸

or X − xxT PSD

}

By Schur complement, C is equivalent to

C =

{

(X,x) ∈ S
n × R

n

[
X x
xT 1

]

� 0

}
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• Schur complement is a useful tool. It shows that a no. of sets can be turned to
an LMI sets.

Example: the Euclidean ball C = {x ∈ R
n | ‖x − xc‖2 ≤ 1}.

C = {x | (x − xc)
T (x − xc) ≤ 1}

= {x | 1 − (x − xc)
T I(x − xc) ≥ 0}

=

{

x

[
1 (x − xc)

T

x − xc I

]

� 0

}

(Schur complement)

Example: An SOC C = {(x, t) ∈ R
n+1 | ‖x‖2 ≤ t, t > 0}.

C = {(x, t) | ‖x‖2
2 ≤ t2, t > 0}

= {(x, t) | t − xT (1
t
I)x ≥ 0, t > 0}

=

{

x

[
t xT

x tI

]

� 0, t > 0

}

(Schur complement)
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