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Least Squares (LS) Problem

In LS, we are concerned with solving

min
x∈Cn

‖Ax− b‖2
2

for x, given A ∈ Cm×n, m > n, and b ∈ Cm.

In essence, Ax− b represents an error vector and we seek

to minimize the sum square of the error vector.

There are so many applications for LS.
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Application I: System Identification

Let u[n] be an input signal that passes through a linear

time-invariant system. The output is given by

x[n] =
L−1∑

`=0

h[`]u[n− `] + ν[n]

where h[n] is the impulse response of the system.

Our aim is to estimate h[n] from x[n], given that u[n] is

known.
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Let u[n] = [ u[n], u[n− 1], . . . , u[n− L + 1] ]T , and

h = [ h[0], h[1], . . . , h[L− 1] ]T . The output signal can be

re-expressed as

x[n] = uT [n]h + ν[n]

System identification can be done by minimizing the sum

squared error:

min
h∈CL

N∑
n=1

∣∣uT [n]h− x[n]
∣∣2

where N is the data length.
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Let x = [ x[1], . . . , x[N ] ]T . We have

x = Uh + ν

where U = [ u[1], . . . ,u[N ] ]T .

The system identification problem can be rewritten as

min
h∈CL

‖Uh− x‖2
2

which is an LS.
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Application II: Channel Equalization

In digital communication over a linear time-dispersive

channel, the discrete signal model is generally formulated as:

x[n] =
L−1∑

`=0

h[`]u[n− `] + ν[n]

where

u[n] transmitted symbol sequence

h[n] channel impulse response

x[n] received signal.
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At the receiver, we apply a filtering process, called

equalization

y[n] =
m−1∑

`=0

w[`]x[n− `]

so that y[n] ≈ u[n].

Let x[n] = [ x[n], x[n− 1], . . . , x[n−m + 1] ]T , and

w = [ w[0], . . . , w[m− 1] ]T . The equalizer output equation

can be rewritten as

y[n] = xT [n]w
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Suppose that u[n] is known for n = 0, 1, . . . , N − 1. In

practice, this is made possible by having the transmitter

sending signals known to the receiver, a.k.a. pilot signals.

The equalizer coefficients w[n] are determined by

min
w∈Cm

N∑
n=1

∣∣xT [n]w − u[n]
∣∣2

= min
w∈Cm

‖Xw − u‖2
2

where X = [ x[1], . . . ,x[N ] ]T , and

u = [ u[0], . . . , u[N − 1] ]T .

The problem is again an LS.
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Application III: Curve Fitting

Consider that there is a collection of experimental

measurements, denoted by x(t1), x(t2), . . . , x(tN).

We seek to find a continuous curve that ’fits’ those data.

Suppose that the curve can be parameterized as

y(t) = θ1 + θ2t + θ3t
2

and assume that x(ti) are perturbed versions of y(t)

x(ti) = y(ti) + ν(ti)

where ν(ti) is noise.
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Let x = [ x(t1), . . . , x(tN) ]T . We have

x = Hθ + ν

where θ = [ θ1, θ2, θ3 ]T , and

H =




1 t1 t22

1 t2 t22
...

1 tN t2N
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Again, we can use LS

min
θ∈R3

‖Hθ − x‖2
2

to determine the curve coefficients.
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Application IV: Linear Prediction

A colored process, denoted by y[n] can be modeled as

y[n] =
∞∑

`=0

h[`]w[n− `]

where w[n] is a zero-mean white process.
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Here we are interested in the autoregressive (AR) process.

In this process h[n] is an all-pole model; i.e., its z-transform

is given by

H(z) = 1/A(z)

A(z) = 1−
m∑

i=1

aiz
−i
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Since

Y (z) = H(z)W (z)

we have that

Y (z)A(z) = W (z)

and that

y[n]−
m∑

i=1

aiy[n− i] = w[n] (∗)

Eq. (∗) can be viewed as a ‘prediction’, where the previous

samples {y[n− i]}m
i=1 predict the present sample y[n], up to

a (unpredictable) perturbation w[n].
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Our aim is to estimate a = [ a1, . . . , am ]T from y[n].

Let

yp = [ y[1], . . . , y[N ] ]T

y[n] = [ y[n− 1], . . . , y[n−m] ]T

Y = [ y[1], . . . ,y[N ] ]T

AR coefficient estimation may be achieved by LS linear

prediction:

min
a∈Cm

‖Ya− yp‖2
2
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Solving LS

First, some remarks:

• In Lecture 4, we have learnt that for m > n,

Ax− b 6= 0

in general, unless b ∈ R(A).

• If rank(A) < n, then the solution set

{ xLS ∈ Cn | ‖AxLS − b‖2
2 = min

x
‖Ax− b‖2

2 }

does not simply contain one element— if xLS is a

solution, then xLS + z, z ∈ N(A) is also a solution.
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Alternative I for solving LS: use Gradient

The gradient of a function f : Rn → R is defined to be

∇f =




∂f
∂x1

...

∂f
∂xn




Some useful properties for gradients:

1. The gradient of f(x) = xTb is ∇f = b.

2. The gradient of f(x) = xTRx where R is symmetric, is

∇f = 2Rx.
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For ease of exposition of ideas, assume that A, b, & x are

real-valued.

Let

f(x) = ‖Ax− b‖2
2

The LS problem

min
x∈Rn

f(x)

is an unconstrained optimization problem. Since f is

convex, the sufficient & necessary condition for xLS to be a

solution is that

∇f |x=xLS
= 0
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We can decompose

f(x) = xTATAx− 2xTATb + bTb

The gradient of f is

∇f = 2ATAx− 2ATb

Hence, an optimal solution xLS can be found by solving

ATAxLS = ATb

For the complex case, it can be shown (in a similar way but

with more hassles) that

AHAxLS = AHb
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Alternative II for solving LS: use the Orthogonal

Principle

Theorem 8.1 (Orthogonal Principle) A vector xLS is an

LS solution if and only if

AH(AxLS − b) = 0
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The equations

AHAxLS = AHb

are referred as to the normal equations.

If A is of full column rank so that AHA is PD, then xLS is

uniquely determined by

xLS = (AHA)−1AHb
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Interpretations of the Normal Equations

Let rLS = b−AxLS be the LS error vector.

For full rank A,

rLS = b−A(AHA)−1AHb

= b−Pb = P⊥b

where P is the orthogonal projection matrix of A, and P⊥
is the orthogonal complement.

This means that the LS error is orthogonal to any vector in

R(A).
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LS for Rank Deficient A

As we mentioned, for rank deficient A there are more than

one LS solutions.

But we can find a unique xLS that has its 2-norm being the

smallest among all LS solutions.
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Let r = rank(A), and denote the SVD of A by

A = UΣVH

= [ U1 U2 ]


Σ̃ 0

0 0





VH

1

VH
2




where Σ̃ = Diag(σ1, . . . , σr) contains the nonzero singular

values of A.

Define

A† = V1Σ̃
−1

UH
1

to be the pseudo-inverse of A.
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Theorem 8.2 The following minimum 2-norm problem

min ‖x‖2
2

s.t. x minimizes ‖Ax− b‖2
2

is uniquely given by

xLS = A†b
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Note that

rLS = b−AxLS

= b− (U1Σ̃VH
1 )(V1Σ̃

−1
UH

1 )b

= b−U1U
H
1 b

= b−Pb = P⊥b

where P = U1U
H
1 is the orthogonal projection matrix of A.

This orthogonal property is the same as that in the case of

full column rank A.
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Some Relationships of the pseudo-inverse

1. For the case of full column rank A (i.e., m ≥ n,

rank(A) = n),

A† = (AHA)−1AHb

which means that the pseudo-inverse leads to the LS in

the full column rank case.

2. For the case of full row rank A (i.e., m ≤ n,

rank(A) = m),

A† = AH(AAH)−1
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Relationship to generalized inverse

A matrix C ∈ Cn×m is said to be the Moore-Penrose

generalized inverse of A if the following 4 conditions hold:

1. ACA = A

2. CAC = C

3. (AC)H = AC

4. (CA)H = CA

It can be verified that A† is the Moore-Penrose generalized

inverse.
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