COM521500
 Math. Methods for SP I Lecture 8: Least Squares

Least Squares (LS) Problem

In LS, we are concerned with solving

$$
\min _{\mathbf{x} \in \mathbb{C}^{n}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

for \mathbf{x}, given $\mathbf{A} \in \mathbb{C}^{m \times n}, m>n$, and $\mathbf{b} \in \mathbb{C}^{m}$.
In essence, $\mathbf{A x}$ - \mathbf{b} represents an error vector and we seek to minimize the sum square of the error vector.

There are so many applications for LS.

Application I: System Identification

Let $u[n]$ be an input signal that passes through a linear time-invariant system. The output is given by

$$
x[n]=\sum_{\ell=0}^{L-1} h[\ell] u[n-\ell]+\nu[n]
$$

where $h[n]$ is the impulse response of the system.
Our aim is to estimate $h[n]$ from $x[n]$, given that $u[n]$ is known.

Let $\mathbf{u}[n]=[u[n], u[n-1], \ldots, u[n-L+1]]^{T}$, and $\mathbf{h}=[h[0], h[1], \ldots, h[L-1]]^{T}$. The output signal can be re-expressed as

$$
x[n]=\mathbf{u}^{T}[n] \mathbf{h}+\nu[n]
$$

System identification can be done by minimizing the sum squared error:

$$
\min _{\mathbf{h} \in \mathbb{C}^{\Sigma}} \sum_{n=1}^{N}\left|\mathbf{u}^{T}[n] \mathbf{h}-x[n]\right|^{2}
$$

where N is the data length.

Let $\mathbf{x}=[x[1], \ldots, x[N]]^{T}$. We have

$$
\mathrm{x}=\mathbf{U h}+\boldsymbol{\nu}
$$

where $\mathbf{U}=[\mathbf{u}[1], \ldots, \mathbf{u}[N]]^{T}$.
The system identification problem can be rewritten as

$$
\min _{\mathbf{h} \in \mathbb{C}^{L}}\|\mathbf{U h}-\mathbf{x}\|_{2}^{2}
$$

which is an LS.

Application II: Channel Equalization

In digital communication over a linear time-dispersive channel, the discrete signal model is generally formulated as:

$$
x[n]=\sum_{\ell=0}^{L-1} h[\ell] u[n-\ell]+\nu[n]
$$

where
$u[n]$ transmitted symbol sequence
$h[n]$ channel impulse response
$x[n]$ received signal.

At the receiver, we apply a filtering process, called equalization

$$
y[n]=\sum_{\ell=0}^{m-1} w[\ell] x[n-\ell]
$$

so that $y[n] \approx u[n]$.
Let $\mathbf{x}[n]=[x[n], x[n-1], \ldots, x[n-m+1]]^{T}$, and $\mathbf{w}=[w[0], \ldots, w[m-1]]^{T}$. The equalizer output equation can be rewritten as

$$
y[n]=\mathbf{x}^{T}[n] \mathbf{w}
$$

Suppose that $u[n]$ is known for $n=0,1, \ldots, N-1$. In practice, this is made possible by having the transmitter sending signals known to the receiver, a.k.a. pilot signals.

The equalizer coefficients $w[n]$ are determined by

$$
\begin{aligned}
& \min _{\mathbf{w} \in \mathbb{C}^{m}} \sum_{n=1}^{N}\left|\mathbf{x}^{T}[n] \mathbf{w}-u[n]\right|^{2} \\
= & \min _{\mathbf{w} \in \mathbb{C}^{m}}\|\mathbf{X} \mathbf{w}-\mathbf{u}\|_{2}^{2}
\end{aligned}
$$

where $\mathbf{X}=[\mathbf{x}[1], \ldots, \mathbf{x}[N]]^{T}$, and $\mathbf{u}=[u[0], \ldots, u[N-1]]^{T}$.

The problem is again an LS.

Application III: Curve Fitting

Consider that there is a collection of experimental measurements, denoted by $x\left(t_{1}\right), x\left(t_{2}\right), \ldots, x\left(t_{N}\right)$.

We seek to find a continuous curve that 'fits' those data.
Suppose that the curve can be parameterized as

$$
y(t)=\theta_{1}+\theta_{2} t+\theta_{3} t^{2}
$$

and assume that $x\left(t_{i}\right)$ are perturbed versions of $y(t)$

$$
x\left(t_{i}\right)=y\left(t_{i}\right)+\nu\left(t_{i}\right)
$$

where $\nu\left(t_{i}\right)$ is noise.

Let $\mathbf{x}=\left[x\left(t_{1}\right), \ldots, x\left(t_{N}\right)\right]^{T}$. We have

$$
\mathrm{x}=\mathbf{H} \boldsymbol{\theta}+\boldsymbol{\nu}
$$

where $\boldsymbol{\theta}=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{T}$, and

$$
\mathbf{H}=\left[\begin{array}{ccc}
1 & t_{1} & t_{2}^{2} \\
1 & t_{2} & t_{2}^{2} \\
& \vdots & \\
1 & t_{N} & t_{N}^{2}
\end{array}\right]
$$

Again, we can use LS
 $$
\min _{\boldsymbol{\theta} \in \mathbb{R}^{3}}\|\mathbf{H} \boldsymbol{\theta}-\mathbf{x}\|_{2}^{2}
$$
 to determine the curve coefficients.

Application IV: Linear Prediction

A colored process, denoted by $y[n]$ can be modeled as

$$
y[n]=\sum_{\ell=0}^{\infty} h[\ell] w[n-\ell]
$$

where $w[n]$ is a zero-mean white process.

Here we are interested in the autoregressive (AR) process.
In this process $h[n]$ is an all-pole model; i.e., its z-transform is given by

$$
\begin{aligned}
H(z) & =1 / A(z) \\
A(z) & =1-\sum_{i=1}^{m} a_{i} z^{-i}
\end{aligned}
$$

Since

$$
Y(z)=H(z) W(z)
$$

we have that

$$
Y(z) A(z)=W(z)
$$

and that

$$
\begin{equation*}
y[n]-\sum_{i=1}^{m} a_{i} y[n-i]=w[n] \tag{*}
\end{equation*}
$$

Eq. (*) can be viewed as a 'prediction', where the previous samples $\{y[n-i]\}_{i=1}^{m}$ predict the present sample $y[n]$, up to a (unpredictable) perturbation $w[n]$.

Our aim is to estimate $\mathbf{a}=\left[a_{1}, \ldots, a_{m}\right]^{T}$ from $y[n]$.
Let

$$
\begin{aligned}
\mathbf{y}_{\mathrm{p}} & =[y[1], \ldots, y[N]]^{T} \\
\mathbf{y}[n] & =[y[n-1], \ldots, y[n-m]]^{T} \\
\mathbf{Y} & =[\mathbf{y}[1], \ldots, \mathbf{y}[N]]^{T}
\end{aligned}
$$

AR coefficient estimation may be achieved by LS linear prediction:

$$
\min _{\mathbf{a} \in \mathbb{C}^{m}}\left\|\mathbf{Y a}-\mathbf{y}_{\mathrm{p}}\right\|_{2}^{2}
$$

Solving LS

First, some remarks:

- In Lecture 4, we have learnt that for $m>n$,

$$
A x-b \neq 0
$$

in general, unless $\mathbf{b} \in R(\mathbf{A})$.

- If $\operatorname{rank}(\mathbf{A})<n$, then the solution set

$$
\left\{\mathbf{x}_{L S} \in \mathbb{C}^{n} \mid\left\|\mathbf{A} \mathbf{x}_{L S}-\mathbf{b}\right\|_{2}^{2}=\min _{\mathbf{x}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}\right\}
$$

does not simply contain one element- if $\mathbf{x}_{L S}$ is a solution, then $\mathbf{x}_{L S}+\mathbf{z}, \mathbf{z} \in N(\mathbf{A})$ is also a solution.

Alternative I for solving LS: use Gradient

The gradient of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined to be

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

Some useful properties for gradients:

1. The gradient of $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{b}$ is $\nabla f=\mathbf{b}$.
2. The gradient of $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{R} \mathbf{x}$ where \mathbf{R} is symmetric, is $\nabla f=2 \mathbf{R x}$.

For ease of exposition of ideas, assume that $\mathbf{A}, \mathbf{b}, \& \mathbf{x}$ are real-valued.

Let

$$
f(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

The LS problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

is an unconstrained optimization problem. Since f is convex, the sufficient \& necessary condition for $\mathbf{x}_{L S}$ to be a solution is that

$$
\left.\nabla f\right|_{\mathbf{x}=\mathbf{x}_{L S}}=\mathbf{0}
$$

We can decompose

$$
f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{b}+\mathbf{b}^{T} \mathbf{b}
$$

The gradient of f is

$$
\nabla f=2 \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{T} \mathbf{b}
$$

Hence, an optimal solution $\mathbf{x}_{L S}$ can be found by solving

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{x}_{L S}=\mathbf{A}^{T} \mathbf{b}
$$

For the complex case, it can be shown (in a similar way but with more hassles) that

$$
\mathbf{A}^{H} \mathbf{A} \mathbf{x}_{L S}=\mathbf{A}^{H} \mathbf{b}
$$

Alternative II for solving LS: use the Orthogonal Principle

Theorem 8.1 (Orthogonal Principle) A vector $\mathrm{x}_{L S}$ is an LS solution if and only if

$$
\mathbf{A}^{H}\left(\mathbf{A} \mathbf{x}_{L S}-\mathbf{b}\right)=\mathbf{0}
$$

The equations

$$
\mathbf{A}^{H} \mathbf{A} \mathbf{x}_{L S}=\mathbf{A}^{H} \mathbf{b}
$$

are referred as to the normal equations.
If \mathbf{A} is of full column rank so that $\mathbf{A}^{H} \mathbf{A}$ is PD , then $\mathbf{x}_{L S}$ is uniquely determined by

$$
\mathbf{x}_{L S}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}
$$

Interpretations of the Normal Equations

Let $\mathbf{r}_{L S}=\mathbf{b}-\mathbf{A} \mathbf{x}_{L S}$ be the LS error vector.
For full rank A,

$$
\begin{aligned}
\mathbf{r}_{L S} & =\mathbf{b}-\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b} \\
& =\mathbf{b}-\mathbf{P b}=\mathbf{P}_{\perp} \mathbf{b}
\end{aligned}
$$

where \mathbf{P} is the orthogonal projection matrix of \mathbf{A}, and \mathbf{P}_{\perp} is the orthogonal complement.

This means that the LS error is orthogonal to any vector in $R(\mathbf{A})$.

LS for Rank Deficient A

As we mentioned, for rank deficient \mathbf{A} there are more than one LS solutions.

But we can find a unique $\mathbf{x}_{L S}$ that has its 2-norm being the smallest among all LS solutions.

Let $r=\operatorname{rank}(\mathbf{A})$, and denote the SVD of \mathbf{A} by

$$
\begin{aligned}
\mathbf{A} & =\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H} \\
& =\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\tilde{\boldsymbol{\Sigma}} & 0 \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{1}^{H} \\
\mathbf{V}_{2}^{H}
\end{array}\right]
\end{aligned}
$$

where $\tilde{\boldsymbol{\Sigma}}=\operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ contains the nonzero singular values of \mathbf{A}.

Define

$$
\mathbf{A}^{\dagger}=\mathbf{V}_{1} \tilde{\mathbf{\Sigma}}^{-1} \mathbf{U}_{1}^{H}
$$

to be the pseudo-inverse of \mathbf{A}.

Theorem 8.2 The following minimum 2-norm problem

$$
\begin{aligned}
& \min \|\mathbf{x}\|_{2}^{2} \\
& \text { s.t. } \mathbf{x} \text { minimizes }\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}
\end{aligned}
$$

is uniquely given by

$$
\mathbf{x}_{L S}=\mathbf{A}^{\dagger} \mathbf{b}
$$

Note that

$$
\begin{aligned}
\mathbf{r}_{L S} & =\mathbf{b}-\mathbf{A} \mathbf{x}_{L S} \\
& =\mathbf{b}-\left(\mathbf{U}_{1} \tilde{\boldsymbol{\Sigma}} \mathbf{V}_{1}^{H}\right)\left(\mathbf{V}_{1} \tilde{\boldsymbol{\Sigma}}^{-1} \mathbf{U}_{1}^{H}\right) \mathbf{b} \\
& =\mathbf{b}-\mathbf{U}_{1} \mathbf{U}_{1}^{H} \mathbf{b} \\
& =\mathbf{b}-\mathbf{P b}=\mathbf{P}_{\perp} \mathbf{b}
\end{aligned}
$$

where $\mathbf{P}=\mathbf{U}_{1} \mathbf{U}_{1}^{H}$ is the orthogonal projection matrix of \mathbf{A}. This orthogonal property is the same as that in the case of full column rank A.

Some Relationships of the pseudo-inverse

1. For the case of full column rank \mathbf{A} (i.e., $m \geq n$, $\operatorname{rank}(\mathbf{A})=n)$,

$$
\mathbf{A}^{\dagger}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}
$$

which means that the pseudo-inverse leads to the LS in the full column rank case.
2. For the case of full row rank \mathbf{A} (i.e., $m \leq n$, $\operatorname{rank}(\mathbf{A})=m)$,

$$
\mathbf{A}^{\dagger}=\mathbf{A}^{H}\left(\mathbf{A A}^{H}\right)^{-1}
$$

Relationship to generalized inverse

A matrix $\mathbf{C} \in \mathbb{C}^{n \times m}$ is said to be the Moore-Penrose generalized inverse of \mathbf{A} if the following 4 conditions hold:

1. $\mathrm{ACA}=\mathrm{A}$
2. $\mathrm{CAC}=\mathrm{C}$
3. $(\mathbf{A C})^{H}=\mathbf{A C}$
4. $(\mathbf{C A})^{H}=\mathbf{C A}$

It can be verified that \mathbf{A}^{\dagger} is the Moore-Penrose generalized inverse.

