
Semidefinite Relaxation of Quadratic
Optimization Problems and Applications

Wing-Kin (Ken) Ma

Department of Electronic Engineering,
The Chinese University of Hong Kong, Hong Kong

Lesson 9, ELEG5481



• Reference:

Z.-Q. Luo, W.-K. Ma, Anthony M.-C. So, Y. Ye, & S. Zhang, “Semidefinite relaxation

of quadratic optimization problems,” in IEEE SP Magazine, Special Issue on Convex

Optimization for Signal Process., May 2010.

[VOLUME 27  NUMBER 3  MAY 2010]

IEEE SIGNAL PROCESSING MAGAZINE [20]   MAY 2010 1053-5888/10/$26.00©2010IEEE

I
n recent years, the semidefinite relaxation (SDR) technique has been at 

the center of some of very exciting developments in the area of signal 

processing and communications, and it has shown great signifi-

cance and relevance on a variety of applications. Roughly speak-

ing, SDR is a powerful, computationally efficient approximation

technique for a host of very difficult optimization problems. In 

particular, it can be applied to many nonconvex quadratically 

constrained quadratic programs (QCQPs) in an almost 

mechanical fashion, including the following problem: 

min
x[Rn

x
T
Cx

s.t. x
T
Fi x $ gi, i5 1, c, p,

x
T
Hi x5 li, i5 1, c, q, (1)

where the given matrices C, F1, c, Fp, H1, c, Hq are 

assumed to be general real symmetric matrices, possibly 

indefinite. The class of nonconvex QCQPs (1) captures 

many problems that are of interest to the signal process-

ing and communications community. For instance, con-

sider the Boolean quadratic program (BQP) 

min
x[Rn       

x
T
Cx

s.t. xi
2
5 1, i5 1, c, n. (2)

The BQP is long known to be a computationally difficult prob-

lem. In particular, it belongs to the class of NP-hard problems. 

Nevertheless, being able to handle the BQP well has an enormous 

impact on multiple-input, multiple-output (MIMO) detection and 

multiuser detection. Another important yet NP-hard problem in the 

nonconvex QCQP class (1) is 
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Outline

• Part I: Basic concepts and overview of semidefinite relaxation (SDR)

• Part II: Theory, and implications in practice

• Part III: Frontier Developments

– Outage-based Transmit Beamforming Optimization
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Part I: Basic Concepts and Overview
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A quick reminder of what convex quadratic functions & constraints are:

• A function f(x) = xTCx =
∑n

i=1

∑n
j=1 xixjCij is convex if and only if C � 0

(C � 0 means that C is positive semidefinite (PSD)).
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(b) C � 0.
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Quadratically Constrained Quadratic Program

Consider the class of real-valued quadratically constrained quadratic programs
(QCQPs):

min
x∈Rn

xTCx

s.t. xTF ix ≥ gi, i = 1, . . . , p,
xTH ix = li, i = 1, . . . , q,

where C,F 1, . . . ,F p,H1, . . . ,Hq ∈ Sn; Sn is the set of all n× n real symmetric
matrices.

• We do not consider convex cases, and C,F i,Hi may be arbitrary.

• Nonconvex QCQP is a very difficult problem in general.
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Nonconvex QCQP: How Hard Could it Be?

Consider the Boolean quadratic program (BQP)

min
x∈Rn

xTCx

s.t. x2
i = 1, i = 1, . . . , n,

a long-known difficult problem falling in the nonconvex QCQP class.

• You could solve it by evaluating all possible
combinations; i.e., brute-force search.

• The complexity of a brute-force search is
O(2n), not okay at all for large n!

• The BQP is NP-hard in general— we still
can’t find an algorithm that can solve a
general BQP in O(np) for any p > 0.
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Nonconvex QCQP: How Hard Could it Be?

Consider the following problem

min
x∈Rn

xTCx

s.t. xTF ix ≥ 1, i = 1, . . . ,m,

where C,F 1, . . . ,Fm are all positive semidefinite, or C,F 1, . . . ,Fm � 0.

• Difficulty: feasible set is the intersection of
the exteriors of ellipsoids.

• This problem is also NP-hard.
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Semidefinite Relaxation for QCQP

Semidefinite relaxation (SDR) is a computationally efficient approximation
approach to QCQP.

• Approximate QCQPs by a semidefinite program (SDP), a class of convex
optimization problems where reliable, efficient algorithms are readily available.

• The idea can be found in an early paper of Lovász in 1979 [Lovász’79].

• It is arguably the work by Goemans & Williamson [Goemans-Williamson’95]
that sparked the significant interest in SDR.

• A key notion introduced by Goemans & Williamson is randomization; we will go
through that.

• SDR has received much interest in the optimization field; now we have seen a
number of theoretically elegant analysis results.

• (This may concern us more) In many applications, SDR works well empirically.
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Impacts of SDR in SP and Commun.

• The introduction of SDR in SP and commun. since the early 2000’s has reshaped
the way we see many topics today.

• Applications identified include

– multiuser/MIMO detection [Tan-Rasmussen’01], [Ma-Davidson-Wong-
Luo-Ching’02]

– multiuser downlink tx beamforming: unicast [Bengtsson-Ottersten’01],
multicast [Sidiropoulos-Davidson-Luo’06], &, more recently, multicell
downlinks, relaying (incl. analog network coding), cognitive radio, secrecy...

– sensor network localization [Biswas-Liang-Wang-Ye’06]
– robust blind receive beamforming [Ma-Ching-Vo’04]
– code waveform design in radar [De Maio et al.’08]
– transmit B1 shim in MRI [Chang-Luo-Wu et al.’08]
– fusion for distributed detection [Quan-Ma-Cui-Sayed’10]
– binary image restoration, phase unwrapping
– large-margin parameter estimation in speech recognition [Li-Jiang’07]
– ...

and the scope of applications is still expanding.
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The Concept of SDR

• For notational conciseness, we write the QCQP as

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(QCQP)

Here, ‘Di’ can represent either ‘≥’, ‘=’, or ‘≤’ for each i; C,A1, . . . ,Am ∈ Sn;
and b1, . . . , bm ∈ R.

• A crucial first step of understanding SDR is to see that

xTCx = Tr(xTCx) = Tr(CxxT ), xTAix = Tr(xTAix) = Tr(Aixx
T ),

or, if we let X = xxT ,

xTCx = Tr(CX), xTAix = Tr(AiX)

• The objective and constraint functions are linear in X.
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The Concept of SDR

• The condition X = xxT is equivalent to X � 0, rank(X) = 1, thus (QCQP)
is the same as

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m
X � 0, rank(X) = 1.

(QCQP)

• The constraints Tr(AiX) Di bi are easy, but rank(X) = 1 is hard.

• Key Insight: Drop the rank-one constraint to obtain a relaxed QCQP

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0.

(SDR)

(SDR) is a convex problem.
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Some Merits We Can Immediately Say

• The SDR
min
X∈Sn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m
(SDR)

is a semidefinite program (SDP), whose globally optimal solution may be found
by available numerical algorithms in polynomial time (often by interior-point
methods, in O(max{m,n}4n1/2 log(1/ǫ)), ǫ being soln. accuracy).

• For instance, using the software toolbox CVX, we can solve (SDR) in MATLAB
with the following lines: (for simplicity we assume ‘ Di’ = ‘≥’ for all i here)

cvx begin

variable X(n,n) symmetric

minimize(trace(C*X));

subject to

for i=1:m

trace(A(:,:,i)*X) >= b(i);

end

X == semidefinite(n)

cvx end
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Issues with the Use of SDR

• There is no free lunch in turning the NP-hard (QCQP) to the convex, polynomial-
time solvable (SDR).

• The issue is how to convert an SDR solution to an approximate QCQP solution.

• If an SDR solution, say, denoted by X⋆, is of rank one; or, equivalently,

X⋆ = x⋆x⋆T ,

then x⋆ is feasible— and in fact optimal— to (QCQP).

• But the case of rank-one SDR solutions does not always hold (otherwise we
would have solved an NP-hard problem in polynomial time!)

• There are many ways to produce an approximate QCQP solution from X⋆, for
instances where rank(X⋆) > 1.
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QCQP Solution Approximation in SDR: An Example

• Consider again the BQP

min xTCx

s.t. x2
i = 1, i = 1, . . . , n.

(BQP)

The SDR of (BQP) is

min Tr(CX)
s.t. X � 0, Xii = 1, i = 1, . . . , n.

(SDR)

• An intuitively reasonable idea (true even for engineers) is to apply a rank-1
approximation to the SDR solution X⋆:

1) Carry out the eigen-decomposition

X⋆ =
∑r

i=1 λiqiq
T
i ,

where r = rank(X⋆), λ1 ≥ λ2 ≥ . . . ≥ λr > 0 are the eigenvalues and
q1, . . . , qr ∈ Rn the respective eigenvectors.

2) Approximate the BQP by x̂ = sgn(
√
λ1q1).
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Application: MIMO Detection

Scenario: A spatial multiplexing system with Mt transmit & Mr receive antennae.

Spatial
Multiplexer

. . . . . 
.

. . . . . 
.

MIMO
Detector

Symbols
s
C

Detected
Symbols

MIMO channel
H

C

Objective: detect symbols from the received signals, given channel information.

• Received signal model:
yC = HCsC + vC

where HC ∈ CMr×Mt is the MIMO channel, sC ∈ CMt is the transmitted
symbol vector, & vC ∈ CMr is complex circular Gaussian noise.

• Assume QPSK constellations, sC ∈ {±1± j}Mt.

W.-K. Ma, Dept. EE, The Chinese University of Hong Kong 15



• Problem: maximum-likelihood (ML) detection (NP-hard)

ŝC,ML = arg min
sC∈{±1±j}Mt

‖yC −HCsC‖2

• The received signal model can be converted to a real form

[
Re{yC}
Im{yC}

]

︸ ︷︷ ︸

y

=
[
Re{HC} −Im{HC}
Im{HC} Re{HC}

]

︸ ︷︷ ︸

H

[
Re{sC}
Im{sC}

]

︸ ︷︷ ︸

s∈{±1}2Mt

+
[
Re{vC}
Im{vC}

]

︸ ︷︷ ︸

v

,

and hence the ML problem can be rewritten (homogenized) as

min
s∈{±1}2Mt

‖y −Hs‖2 = min
s∈{±1}2Mt,t∈{±1}

‖ty −Hs‖2

= min
s∈{±1}2Mt,t∈{±1}

[
sT t

]
[
HTH −HTy

−yTH ‖y‖2
] [

s

t

]

,

which is a BQP. Subsequently, SDR can be applied [Tan-Rasmussen’01],
[Ma-Davidson-Wong-Luo-Ching’02].
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Additional Remarks about the MIMO Detection Application

• The idea is not restricted to spatial multiplexing! It can also be used in multiuser
CDMA, space-time/freq./time-freq. coding, multiuser MIMO, and even blind
MIMO [Li-Bai-Ding’03], [Ma-Vo-Davidson-Ching’06],...

• Extensions that have been considered:

– MPSK constellations [Ma-Ching-Ding’04];
– higher-order QAM constellations [Ma-Su-Jaldén-Chang-Chi’09] (and refs.

therein);
– soft-in-soft-out MIMO detection (a.k.a. BICM-MIMO) [Steingrimsson-Luo-

Wong’03];
– fast implementations [Kisialiou-Luo-Luo’09], [Wai-Ma-So’11]

• Performance analysis for SDR MIMO detection:

– diversity analysis [Jaldén-Ottersten’08]
– probabilistic approximation accuracy analysis [Kisialiou-Luo’10], [So’10].
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Alternative Interpretation of SDR: Solving QCQP in

Expectation

• We return to the SDR solution approximation issue. Recall

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(QCQP)

• Let ξ ∼ N (0,X) where X is the covariance. Consider a stochastic QCQP:

min
X∈Sn, X�0

Eξ∼N (0,X){ξTCξ}
s.t. Eξ∼N (0,X){ξTAiξ} Di bi, i = 1, . . . ,m,

(E-QCQP)

where we manipulate the statistics of ξ so that the objective function is minimized
& constraints are satisfied in expectation.

• One can show that (E-QCQP) is the same as the SDR

min Tr(CX)
s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

(SDR)
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• The stochastic QCQP interpretation of SDR

min
X∈Sn

Eξ∼N (0,X){ξTCξ}
s.t. Eξ∼N (0,X){ξTAiξ} Di bi, i = 1, . . . ,m

(E-QCQP)

essentially sheds lights into a different way of approximating QCQP.

• What we could do is the following: generate a random vector ξ ∼ N (0,X⋆)
(X⋆ is an SDR soln.), and modify ξ so that it is QCQP-feasible.

• Such a randomized QCQP soln. approx. may be performed multiple times, to
get a better approx.

• (Believe it or not) The stochastic QCQP interpretation is the intuition behind
many important theoretical SDR approx. accuracy results, including the famous
Goemans-Williamson result [Goemans-Williamson’95].
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Example: Randomization in BQP or MIMO Detection

A simple (and very important) example for illustrating randomizations is BQP:

min xTCx

s.t. x2
i = 1, i = 1, . . . , n.

(BQP)

Box 1. Gaussian Randomization Procedure for BQP
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ N (0,X⋆), and construct a feasible point

x̃ℓ = sgn(ξℓ).

end
determine ℓ⋆ = arg min

ℓ=1,...,L
x̃T
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as an approximate solution to (BQP).
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Complex-valued QCQP and SDR

• Consider a general complex-valued QCQP

min
x∈Cn

xHCx

s.t. xHAix Di bi, i = 1, . . . ,m,
(1)

where C,A1, . . . ,Am ∈ Hn; Hn denotes the set of n× n Hermitian matrices.

• Using the same idea, SDR can be derived for complex-valued QCQP:

min
X∈Hn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

The only difference is that the problem domain now is Hn (change ‘symmetric’
to ‘hermitian’ in your CVX code).

• Note that while the ideas leading to real and complex SDRs are the same, their
performance may be different (we will see this later).
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Application: Multicast Transmit Beamforming

Scenario: Common information broadcast in multiuser MISO downlink, assuming
channel state information at the transmitter (CSIT).

• The transmit signal:

x(t) = ws(t),

where s(t) ∈ C is the tx. data stream, &
w ∈ CNt is the tx. beamvector.

• Received signal for user i:

yi(t) = hH
i x(t) + vi(t),

where hi ∈ CNt is the channel of user i, &
vi(t) is noise with variance σ2

i .

⋮

Basestation

User 1

User 2
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• Consider a QoS-assured design:

min
w∈CNt

‖w‖2

s.t. SNRi ≥ γi, i = 1, . . . , K,

where each γi is a prescribed SNR requirement for user i, and

SNRi = E{|hH
i ws(t)|2}/σ2

i = wHRiw/σ2
i ,

Ri =

{
hih

H
i , hi is available (instant CSIT),

E{hih
H
i }, hi is random with known 2nd order stat. (stat. CSIT).

• The design problem can be rewritten as a complex-valued QCQP

min ‖w‖2
s.t. wHAiw ≥ 1, i = 1, . . . ,K,

where Ai = Ri/γiσ
2
i .

• This multicast problem is NP-hard in general, but can be approximated by SDR
[Sidiropoulos-Davidson-Luo’06].
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A Randomization Example Relevant to Multicast Beamforming
Consider the problem

min xHCx

s.t. xHAix ≥ 1, i = 1, . . . ,m,
(†)

where C,A1, . . . ,Am � 0.

Box 2. Gaussian Randomization Procedure for (†)
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ CN (0,X⋆), and construct a feasible point

x̃ℓ =
ξℓ

√

mini=1,...,m ξHℓ Aiξℓ

end
determine ℓ⋆ = arg min

ℓ=1,...,L
x̃H
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as an approximate solution to (†).
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Extension to Complex-Valued Separable QCQP

• Consider a further extension, called complex-valued separable QCQP:

min
x1,...,xk∈Cn

∑k
i=1x

H
i Cixi

s.t.
∑k

l=1x
H
l Ai,lxl Di bi, i = 1, . . . ,m.

• By writing Xi = xix
H
i for all i, and then “semidefinite-relaxing” them, we

obtain an SDR

min
X1,...,Xk∈Hn

∑k
i=1Tr(CiXi)

s.t.
∑k

l=1Tr(Ai,lXi) Di bi, i = 1, . . . ,m,
X1 � 0, . . . ,Xk � 0.
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Application: Unicast Transmit Downlink Beamforming

Scenario: multiuser MISO downlink; each user receives an individual data stream.

⋮

Basestation

User 1

User 2

• Transmit signal:

x(t) =
K∑

i=1

wisi(t),

where si(t) ∈ C is the data stream for user i, &
wi ∈ CNt its tx. beamvector.

• Received signal of user i:

yi(t) = hH
i x(t) + vi(t)

= hH
i wisi(t) +

∑

l 6=i

hH
i wlsl(t)

︸ ︷︷ ︸
interference

+vi(t).
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• The signal-to-interference-and-noise ratio (SINR) of user i:

SINRi =
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

,

where Ri = hih
H
i for instant. CSIT, and Ri = E{hih

H
i } for stat. CSIT.

• Consider the QoS-assured design:

min
w1,...,wK∈CNt

∑K
i=1 ‖wi‖2

s.t.
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

≥ γi, i = 1, . . . , K
(†)

and its SDR

min
W 1,...,WK∈HNt

∑K
i=1Tr(W i)

s.t. Tr(RiW i) ≥ γi(
∑

l 6=iTr(RiW l) + σ2
i ), i = 1, . . . ,K,

W 1, . . . ,WK � 0.

(‡)

• (‡) is shown to have a rank-one solution forR1, . . . ,RK � 0, via uplink-downlink
duality [Bengtsson-Ottersten’01]; SDR is optimal to (†), so to speak!

• We will introduce an “easy” way to identify rank-one SDR instances.
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SDR Versus Nonlinear Programming: They complement, not

compete

• Since SDR is an approximation method, as an alternative one may choose to
approximate (QCQP) by a nonlinear programming method (NPM) (like, SQP in
the MATLAB Optimization Toolbox).

• So should we compare SDR and NPM?

• The interesting argument is that they complement each other, instead of
competing:

– An NPM depends much on a ‘good’ starting point, and that’s usually the
missing piece.

– To SDR, NPMs may serve as a local refinement of the solution.

• One may consider a two-stage approach where SDR is used as a starting point
for NPMs.
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Application: Sensor Network Localization
The sensor network localization (SNL) problem is to determine the (x, y) coordinates
of the sensors, given distance information between sensors.

• In ad-hoc sensor networks, the
sensor locations may not be
known.

• A sensor may acquire its location
by equipping it with GPS, but this
may be too expensive.

• We may have several anchor

sensors that have self-localization
capability, though.

Anchors

Sensors

• Since sensors can communicate with each other, each sensor pair can work out
their distance (e.g., by measuring the time-of-arrival info., or by ping-pong).

• The inter-sensor distances, together with anchor locations, can be used to
estimate all the sensor locations in a joint fashion.
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• Let {x1, . . . ,xn}, xi ∈ R2 for all i, be the collection of all (unknown) sensor
coordinates.

• Let {a1, . . . ,am}, ai ∈ R2, be the collection of all (known) anchor coordinates.

• The distance between sensor i and sensor j is

dij =
√

(xi,1 − xj,1)2 + (xi,2 − xj,2)2 = ‖xi − xj‖

Likewise, the distance between sensor i and anchor j is

d̄ij = ‖xi − aj‖

The obtained dij & d̄ij are assumed noiseless (extension for noisy cases available).

• The SNL problem here is that of finding x1, . . . ,xn such that

‖xi − xj‖2 = d2ij, (i, j) ∈ Ess

‖xi − aj‖2 = d̄2ij, (i, j) ∈ Esa

where Ess & Esa are the sensor-to-sensor & sensor-to-anchor edge sets, resp.
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• Let X = [ x1, . . . ,xn ] ∈ R2×n. The SNL problem is written as

find X

s.t. xT
i xi − 2xT

i xj + xT
j xj = d2ij, (i, j) ∈ Ess

xT
i xi − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa

• Let Y = XTX ∈ Rn×n. The SNL problem have an equivalent formulation

find X,Y
s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess

Yii − 2xT
i aj + aT

j aj = d̄2ij, (i, j) ∈ Esa

Y = XTX

• Naturally (and after you have seen how SDR operates), the SNL problem can
be approximated by SDR:

find X,Y
s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess

Yii − 2xT
i aj + aT

j aj = d̄2ij, (i, j) ∈ Esa

Y � XTX

W.-K. Ma, Dept. EE, The Chinese University of Hong Kong 36



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

SDR (ML-SNL formulation), plus a 2nd-stage solution refinement by gradient descent.

The distance measurements are noisy. ◦: true sensor locations; ♦: anchor locations; ∗:

SDR solution; — : gradient descent trajectory (50 iterations).
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Gradient descent ML-SNL with a random starting point. ◦: true sensor locations; ♦:

anchor locations; — : gradient descent trajectory (50 iterations).

W.-K. Ma, Dept. EE, The Chinese University of Hong Kong 38



Part II: Theory
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Provable Approximation Accuracies

The following problem has been of great interest to optimization theorists,
and it has enormous implications in practice.

• Let v(x) = xTCx, and denote the optimal values of (QCQP) and (SDR) by

vQP = min xTCx

s.t. xTAix Di bi, i = 1, . . . ,m
vSDR = min Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m

Moreover, let x̂ be an approximate solution of (QCQP), say, using randomization.
Note that

vQP ≤ v(x̂).

• The problem is to prove a constant γ such that

v(x̂) ≤ γvQP

in a worst case sense, or with high probability. A γ close to 1 would mean a
near-optimal accuracy.
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The Seminal Approx. Accuracy Result by Goemans &

Williamson

• Consider
vQP = max

x∈Rn
xTCx

s.t. x2
i = 1, i = 1, . . . , n

with C � 0, Cij ≤ 0 for all i 6= j (the so-called MAXCUT in network
optimization).

• In [Goemans-Williamson’95], it was shown that if the randomization procedure
is used, then

γvQP ≤ E{v(x̂)} ≤ vQP

where γ ≈ 0.87856.

• The work by Goeman and Williamson has triggered much interest, resulting
in many more approx. accuracy results being established for a wider class of
problems.
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Approx. Accuracy Result for Quadratic Minimization

• Consider now the problem

vQP = min
x∈Cn

xHCx

s.t. xHAix ≥ 1, i = 1, . . . ,m
(†)

for C,A1, . . . ,Am � 0, which arises in multicast downlink beamforming.

• It was shown in [Luo-Sidiropoulos-Tseng-Zhang’07] that if the randomization
procedure in Box 2 is used, then with high probability (instead of just in
expectation),

vQP ≤ v(x̂) ≤ γvQP,

where γ = 8m.

– In multicast beamforming, this result says that we can produce a transmit
beamforming vector that satisfies all the prescribed SNR requirements and
whose power is at most 8m times the optimal.

– Notice that this ratio accommodates the worst possible problem instance
{C,A1, . . . ,Am}. In practice, the approximation accuracies are usually much
better— a phenomenon that deserves further investigation.
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problem approx. accuracyγ; see (21)-(22) for def. references
Boolean QP

max
x∈Rn

xT Cx

s.t. x2

i = 1, i = 1, . . . , n γ =







0.87856, C � 0, Cij ≤ 0 ∀i 6= j
2/π ≃ 0.63661, C � 0

1 (opt.), Cij ≥ 0, ∀i 6= j

Goemans-Williamson [2],
Nesterov [3], Zhang [6].
Relevant applications: [24]–[26]

Complexk-ary QP

max
x∈Cn

xHCx

s.t. xi ∈ {1, ω, . . . , ωk−1},
i = 1, . . . , n

whereω = ej2π/k, andk > 1 is an integer.

For C � 0,

γ =
(k sin(π/k))2

4π
.

e.g.,γ = 0.7458 for k = 8, γ = 0.7754 for k = 16.

Zhang-Huang [7],
So-Zhang-Ye [8].
Relevant applications: [27], [37]

Complex constant-modulus QP

max
x∈Cn

xHCx

s.t. |xi|2 = 1, i = 1, . . . , n

For C � 0,
γ = π/4 = 0.7854.

Remark: coincide with complexk-ary QP ask → ∞.

Zhang-Huang [7],
So-Zhang-Ye [8].

max
x∈Cn

xHCx

s.t. (|x1|2, . . . , |xn|2) ∈ F

whereF ⊂ Rn is a closed convex set.

The same approx. ratio as in complex constant-modulus QP;
i.e., γ = π/4 for C � 0.

If the problem is reduced to the real-valued case, then the
approx. ratio results are the same as that in Boolean QP.

Ye [4], Zhang [6].

max
x∈Rn

xT Cx

s.t. xT Aix ≤ 1, i = 1, . . . , m

whereA1, . . . , Am � 0.

For anyC ∈ Sn,

γ =
1

2 ln(2mµ)

whereµ = min{m, maxi rank(Ai)}.

Nemirovski-Roos-Terlaky [5].
Extensions: Ye [72], Luo-Sidiropoulos-
Tseng-Zhang [9] and So-Ye-
Zhang [71].

Known approximation accuracies for quadratic maximization problems. The reference numbers

refer to those in our Signal Processing Magazine article.
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problem approx. accuracyγ; see (18)-(19) for def. references

min
x∈Cn

xHCx

s.t. xHAix ≥ 1, i = 1, . . . , m

whereA1, . . . , Am � 0.

γ = 8m.

If the problem is reduced to the real-valued case, then

γ =
27m2

π
.

Luo-Sidiropoulos-Tseng-Zhang [9]; see
also So-Ye-Zhang [71].
Relevant applications: [29]

MIMO Detection

min
x∈Rn

‖y − Hx‖2

2

s.t. x2

i
= 1, i = 1, . . . , n

wherey = Hs+v; H ∈ Cn×n has i.i.d. standard
complex Gaussian entries;s2

i
= 1 for i = 1, . . . , n;

andv ∈ Cn has i.i.d. complex mean zero Gaussian
entries with varianceσ2.

For σ2 ≥ 60n (which corresponds to the low signal-to-noise
ratio (SNR) region), with probability at least1−3 exp(−n/6),

γ ≤
11

2
.

For σ2 = O(1) (which corresponds to the high SNR region),
with probability at least1 − exp(−O(n)),

γ = 1,

i.e. the SDR is tight.

Kisialiou-Luo [67], So [69].
Extensions: So [68], [69].
Related: Jaldén-Ottersten [66].
Relevant applications: [17]–[20], [22],
[23]

Known approximation accuracies for quadratic minimization problems. The reference numbers

refer to those in our Signal Processing Magazine article.
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Rank Reduction in SDR

• Now you may notice that an SDR methodology basically has the following steps:

1) formulate a hard problem (nonconvex QCQP) as a rank-one-constrained SDP
2) remove the rank constraint to obtain an SDP
3) use some methods, such as randomizations, to produce an approximate

solution to the original problem.

• Apparently, the lower the rank of the SDP solution, the better the approximation
we would expect.

• Unfortunately, we cannot guarantee a low rank solution for the SDP in general.

• But we can identify special cases where the SDP solution rank is low, and,
sometimes, one.
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Shapiro-Barvinok-Pataki (SBP) Result

• Consider the real-valued SDP (or SDR)

min
X∈Sn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m
(SDR)

SBP Result [Pataki’98]: there exists an optimal solution X⋆ such that

rank(X⋆)(rank(X⋆) + 1)

2
≤ m

• In particular, SBP result implies that for m ≤ 2, a rank-1 X⋆ exists. Hence,

For a real-valued QCQP with m ≤ 2, SDR is tight; i.e., solving the SDR is
equivalent to solving the original QCQP.

• Note that a rank reduction algorithm may be required to turn an SDP solution
to a rank-one solution [Ye-Zhang’03].
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Complex Extension of the Rank Reduction Result

• Let us consider the extension to the complex-valued SDP

min
X∈Hn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m

• In this case, the SBP result can be generalized to [Huang-Palomar’09]

rank(X⋆)2 ≤ m

and the direct consequence is that

For a complex-valued QCQP with m ≤ 3, SDR is tight; i.e., solving the
SDR is equivalent to solving the original QCQP.

• A complex rank-1 decomposition algorithm for m ≤ 3 is available [Huang-
Zhang’07].
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Application Revisited: Multicast Beamforming

• Recall the multicast beamforming problem:

min
w∈CNt

‖w‖2

s.t. SNRi =
wRiw

σ2
i

≥ γi,

i = 1, . . . , K,

K being the number of users.

⋮

Basestation

User 1

User 2

• By the SBP result, SDR solves the multicast problem optimally for K ≤ 3.
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Further Extension of the Rank Reduction Result

• Recall the problem

min
X1,...,Xk∈Hn

∑k
i=1Tr(CiXi)

s.t.
∑k

l=1Tr(Ai,lXi) Di bi, i = 1, . . . ,m,
X1 � 0, . . . ,Xk � 0,

which is an SDR of the so-called separable QCQP.

• A generalization of the SBP result [Huang-Palomar’09]:

∑k
i=1 rank(X

⋆
i )

2 ≤ m,

and, as a subsequent result:

Suppose that an SDR solution cannot have X⋆
i = 0 for any i. Then SDR

is tight for m ≤ k + 2.
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Application Revisited: Unicast Beamforming

⋮

Basestation

User 1

User 2

• Recall the design problem

min
w1,...,wK∈CNt

∑K
i=1 ‖wi‖2

s.t.
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

≥ γi,

i = 1, . . . , K

(†)

which is a separable QCQP with K variables
(beamvectors) and K constraints (SINR req.).

• By the SBP rank reduction result, SDR solves (†) optimally for any R1, . . . ,RK,
regardless of Ri � 0 or not.

• And hey, it’s still fine if you put two more quadratic constraints in (†)!
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Cognitive Radio (CR) Beamforming: A Further Example

• Goal: access the channel owned by primary users (PUs) through spectrum
sharing.

• Idea: the CR system avoids excessive interference to the PUs through tx. opt.

• Scenario: MISO downlink with the CR (or secondary) system, either unicast
or multicast; K secondary users (SUs); L single-antenna PUs

Primary 

Rx

Secondary 

Rx

Primary Tx

Secondary 

Tx

• Assume known CSIT from the secondary transmitter to the PUs.
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• Consider the multicast case.

– tx. and rx. model for SUs: same as the previous multicast model.
– Interference to the lth PU:

|gH
l w|2

where gl is the channel from the secondary transmitter to the lth PU.

• Design problem [Phan-Vorobyov-Sidiropoulos-Tellambura’09]:

min
w

‖w‖2

s.t. SNRSU,i = wHRkw/σ2
k ≥ γk, k = 1, . . . , K,

wHGlw ≤ δl, l = 1, . . . , L (interference temperature (IT) constraints)

where Gl is the CSIT of lth PU (defined in the same way as Rk), δl is the
tolerable interference level to l PU, & γk are SUs’ SNR requirements.

• By the SBP rank result, SDR is optimal when K ≤ 2, L = 1 (≤ 2 SUs, 1 PU).
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• CR BF design for the unicast case (see, e.g., [Zhang-Liang-Cui’10]):

min
w1,...,wK

K∑

k=1

‖wk‖2

s.t. SINRSU,i =
wH

k Rkwk
∑

l 6=kw
H
l Rkwl + σ2

k

≥ γk, k = 1, . . . , K,

∑K
k=1w

H
k Glwk ≤ δl, l = 1, . . . , L (IT constraints)

• A separable QCQP with K variables and K + L constraints.

• By the SBP rank result, SDR solves the problem if L ≤ 2.

• Remark: For instant. CSIT with SUs, SDR can be shown to be optimal for any
L. Or it can be reformulated, and then solved, by SOCP.
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Part III: Frontier Development
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Transmit Beamforming

• Transmit beamforming is now a key topic; see [Gershman-Sidiropoulos-
Shahbazpanahi-Bengtsson-Ottersten’10], [Luo-Chang’10] for review.

• Apart from standard transmit beamforming, we have seen numerous extensions:

– one-way relay beamforming [Fazeli-Dehkordy-Shahbazpanahi-Gazor’09],
[Chalise-Vandendorpe’09]

– two-way relay beamforming (a.k.a. analog network coding) [Zhang-Liang-
Chai-Cui’09]

– cognitive radio beamforming [Zhang-Liang-Cui’10]
– multicell coordinated beamforming [Bengtsson-Ottersten’01], [Dahrouj-

Yu’10]
– secrecy beamforming [Liao-Chang-Ma-Chi’10], [Li-Ma’11],

• Interestingly, all these beamforming problems turn out to be, or be closely related
to, nonconvex QCQPs.

• And, as it turns out, SDR plays a key role.
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Frontier Problem: Outage-Based Unicast Transmit

Beamforming

CSIT is generally imperfectly known in practice.

⋮

Basestation

Presumed
User 1

Presumed 
User 2

Actual
User 2

Actual
User 1

• Suppose that the presumed CSIT, {hi}, is
inaccurate.

• If we directly substitute the presumed CSIT
into the standard QoS-assured design

min
w1,...,wK∈CN

∑K
i=1 ‖wi‖2

s.t.
|wH

i hi|2
∑

l 6=i |wH
l hi|2 + σ2

i

≥ γi,

i = 1, . . . , K,

and run it, then the resultant design may
have severe SINR outage.

W.-K. Ma, Dept. EE, The Chinese University of Hong Kong 56



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

Actual SINR satisfaction probability (Mean = 0.38043)

C
o

u
n

ts
 o

v
e

r 
d

if
fe

re
n

t 
c
h

a
n

n
e

l 
re

a
liz

a
ti
o

n
s

 

 

Non−robust

Histogram of the actual SINR satisfaction probabilities of the non-robust QoS-assured design.

Nt = K = 3; i.i.d. complex Gaussian CSI errors with zero mean and variance 0.002; γ = 11dB.

The design has more than 50% outage most of the time.
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Outage-Based Unicast Transmit Beamforming: Formulation

• Let us assume that hi ∼ CN (h̄i, σ
2
eI), where h̄i is the presumed channel, and

σ2
e is the CSI uncertainty variance.

• A meaningful, but very difficult, design problem:

min
w1,...,wK∈CN

∑K
i=1 ‖wi‖2

s.t. Probhi∼CN (h̄i,σ2
eI)

{

wH
i hih

H
i wi

∑

l 6=iw
H
l hih

H
i wl + σ2

i

≥ γi

}

≥ 1− ρi,

i = 1, . . . ,K,

where the ρi’s are the maximum tolerable outage probabilities.
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• The outage-based SINR constraints

Probhi∼CN (h̄i,σ2
eI)

{

wH
i hih

H
i wi

∑

l 6=iw
H
l hih

H
i wl + σ2

i

≥ γi

}

≥ 1− ρi

can be rewritten as

Probei∼CN (0,σ2
eI)






(h̄i + ei)

H




1

γi
wiw

H
i −

∑

l 6=i

wlw
H
l



 (h̄i + ei) ≥ σ2
i






≥ 1−ρi.

• Challenges:

– The probability on the LHS has no simple closed form expression.
– The quadratic function

(h̄i + ei)
H




1

γi
wiw

H
i −

∑

l 6=i

wlw
H
l



 (h̄i + ei)

is indefinite (and hence nonconvex) in the design variables w1, . . . ,wK.
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Tackling the Nonconvexity: SDR

• Let us first do the thing we are good at — SDR.

• By SDR, we have

Probei∼CN (0,σ2
eI)






(h̄i + ei)

H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei) ≥ σ2
i






≥ 1− ρi.

• Now, the function

(h̄i + ei)
H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei)

is linear in the variables W 1, . . . ,W k, which is good.

• However, the probability still does not admit a simple closed form expression.
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Processing the Probabilistic Constraint: Convex Restriction

• Let

Vi({W j}) = Probei∼CN (0,σ2
eI)






(h̄i + ei)

H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei) < σ2
i







be the violation probability. Recall that we want

Vi({W j}) ≤ ρi.

• It is not hard to see that Vi can be expressed as

Vi({W j}) = Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}

for some Q, r and s that depend on W 1, . . . ,WK and the index i. (Here and
in the sequel, we drop the index i for notational simplicity.)
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• To process the violation probability Vi, another idea is to find an efficiently
computable convex function f(Q, r, s, t), where t is an additional decision
vector, such that

Vi({W j}) = Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}
≤ f(Q, r, s, t).

• Then, by construction, the convex constraint

f(Q, r, s, t) ≤ ρ (CR-PC)

serves as a sufficient condition for the probabilistic constraint

Vi({W j}) ≤ ρ (PC)

to hold. We call (CR-PC) a convex restriction of (PC).
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Finding the Convex Restriction

• Can we find such a convex function? Does it even exist? The answer is: Yes!
(And there are many such functions.)

• For instance, we can employ a Bernstein-type inequality [Bechar2009], which
states that

Probe∼CN (0,I){eHQe+ 2Re{eHr}+ s < 0} ≤ e−T−1(s),

where T (η) = Tr(Q)−√
2η

√

‖Q‖2F + ‖r‖2 − ηmax{λmax(−Q), 0}.

• Is the constraint
e−T−1(s) ≤ ρ

convex? Yes! It is equivalent to

Tr(Q)−
√

−2 ln(ρ) · t1 + ln(ρ) · t2 + s ≥ 0,
√

‖Q‖2F + 2‖r‖2 ≤ t1,

t2I +Q � 0,

t2 ≥ 0.
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Putting Things Together: The Relaxation-Restriction

Approach

• Applying the Bernstein-type inequality to the SDR’ed SINR constraints (with
some additional work), a convex relaxation-restriction approximation is developed
[Wang-Chang-Ma-So-Chi’11].

• A mysterious finding in simulations: rank-one SDR solution is obtained in
almost all the problem instances!
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Bernstein

Histogram of the actual SINR satisfaction probabilities of the proposed SDR+Bernstein method.

Nt = K = 3; i.i.d. complex Gaussian CSI errors with zero mean and variance 0.002; γ = 11dB;

ρ = 0.1 (90% SINR satisfaction).
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SDR+Bernstein
Probabilistic SOCP

Feasibility performance of the proposed method and the probabilistic SOCP method [Shenouda-

Davidson’08]. Nt = K = 3; σ2
e = 0.002; γ = 11dB; ρ = 0.1 (90% SINR satisfaction).
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Probabilistic SOCP
SDR+Bernstein

Transmit power performance of the proposed method and the probabilistic SOCP method.

Nt = K = 3; σ2
e = 0.002; ρ = 0.1 (90% SINR satisfaction).
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