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I
n recent years, the semidefinite relaxation (SDR) technique has been at 

the center of some of very exciting developments in the area of signal 

processing and communications, and it has shown great signifi-

cance and relevance on a variety of applications. Roughly speak-

ing, SDR is a powerful, computationally efficient approximation

technique for a host of very difficult optimization problems. In 

particular, it can be applied to many nonconvex quadratically 

constrained quadratic programs (QCQPs) in an almost 

mechanical fashion, including the following problem: 

min
x[Rn

x
T
Cx

s.t. x
T
Fi x $ gi, i5 1, c, p,

x
T
Hi x5 li, i5 1, c, q, (1)

where the given matrices C, F1, c, Fp, H1, c, Hq are 

assumed to be general real symmetric matrices, possibly 

indefinite. The class of nonconvex QCQPs (1) captures 

many problems that are of interest to the signal process-

ing and communications community. For instance, con-

sider the Boolean quadratic program (BQP) 

min
x[Rn       

x
T
Cx

s.t. xi
2
5 1, i5 1, c, n. (2)

The BQP is long known to be a computationally difficult prob-

lem. In particular, it belongs to the class of NP-hard problems. 

Nevertheless, being able to handle the BQP well has an enormous 

impact on multiple-input, multiple-output (MIMO) detection and 

multiuser detection. Another important yet NP-hard problem in the 

nonconvex QCQP class (1) is 
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Outline

• Part I: Basic concepts and overview of semidefinite relaxation (SDR)

• Part II: Theory, and implications in practice

• Part III: Applications

– A. MIMO detection
– B. Sensor network localization
– C. Transmit beamforming
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Part I: Basic Concepts and Overview
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A quick reminder of what convex quadratic functions & constraints are:

• A function f(x) = xTCx =
∑n

i=1

∑n
j=1 xixjCij is convex if and only if C � 0

(C � 0 means that C is positive semidefinite (PSD)).
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(a) C � 0.
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(b) C � 0.
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• A constraint set {x ∈ Rn | xTFx ≤ 1} is convex if and only if F � 0.

0

(a) F � 0.

0

(b) F � 0.

• A constraint set {x ∈ Rn | xTFx = 1} is nonconvex.
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Quadratically Constrained Quadratic Program

Consider the class of real-valued quadratically constrained quadratic programs
(QCQPs):

min
x∈Rn

xTCx

s.t. xTF ix ≥ gi, i = 1, . . . , p,
xTH ix = li, i = 1, . . . , q,

where C,F 1, . . . ,F p,H1, . . . ,Hq ∈ Sn; Sn is the set of all n× n real symmetric
matrices.

• We do not consider convex cases, and C,F i,Hi may be arbitrary.

• Nonconvex QCQP is a very difficult problem in general.
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Nonconvex QCQP: How Hard Could it Be?

Consider the Boolean quadratic program (BQP)

min
x∈Rn

xTCx

s.t. x2
i = 1, i = 1, . . . , n,

a long-known difficult problem falling in the nonconvex QCQP class.

• You could solve it by evaluating all possible
combinations; i.e., brute-force search.

• The complexity of a brute-force search is
O(2n), not okay at all for large n!

• The BQP is NP-hard in general— we still
can’t find an algorithm that can solve a
general BQP in O(np) for any p > 0.
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Nonconvex QCQP: How Hard Could it Be?

Consider the following problem

min
x∈Rn

xTCx

s.t. xTF ix ≥ 1, i = 1, . . . ,m,

where C,F 1, . . . ,Fm are all positive semidefinite, or C,F 1, . . . ,Fm � 0.

• Difficulty: feasible set is the intersection of
the exteriors of ellipsoids.

• This problem is also NP-hard.
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Semidefinite Relaxation for QCQP

Semidefinite relaxation (SDR) is a computationally efficient approximation
approach to QCQP.

• Approximate QCQPs by a semidefinite program (SDP), a class of convex
optimization problems where reliable, efficient algorithms are readily available.

• The idea can be found in an early paper of Lovász in 1979 [Lovász’79].

• It is arguably the work by Goemans & Williamson [Goemans-Williamson’95]
that sparked the significant interest in SDR.

• A key notion introduced by Goemans & Williamson is randomization; we will go
through that.

• SDR has received much interest in the optimization field; now we have seen a
number of theoretically elegant analysis results.

• (This may concern us more) In many applications, SDR works well empirically.
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Impacts of SDR in SP and Commun.

• The introduction of SDR in SP and commun. since the early 2000’s has reshaped
the way we see many topics today.

• Applications identified include

– multiuser/MIMO detection [Tan-Rasmussen’01], [Ma-Davidson-Wong-
Luo-Ching’02]

– multiuser downlink tx beamforming: unicast [Bengtsson-Ottersten’01],
multicast [Sidiropoulos-Davidson-Luo’06], &, more recently, multicell
downlinks, relaying (incl. analog network coding), cognitive radio, secrecy...

– sensor network localization [Biswas-Liang-Wang-Ye’06]
– robust blind receive beamforming [Ma-Ching-Vo’04]
– code waveform design in radar [De Maio et al.’08]
– transmit B1 shim in MRI [Chang-Luo-Wu et al.’08]
– fusion for distributed detection [Quan-Ma-Cui-Sayed’10]
– binary image restoration, phase unwrapping
– large-margin parameter estimation in speech recognition [Li-Jiang’07]
– ...

and the scope of applications is still expanding.
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The Concept of SDR

• For notational conciseness, we write the QCQP as

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(QCQP)

Here, ‘Di’ can represent either ‘≥’, ‘=’, or ‘≤’ for each i; C,A1, . . . ,Am ∈ Sn;
and b1, . . . , bm ∈ R.

• A crucial first step of understanding SDR is to see that

xTCx = Tr(xTCx) = Tr(CxxT ), xTAix = Tr(xTAix) = Tr(Aixx
T ),

or, if we let X = xxT ,

xTCx = Tr(CX), xTAix = Tr(AiX).

• The objective and constraint functions are linear in X.

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 11



The Concept of SDR

• The condition X = xxT is equivalent to X � 0, rank(X) = 1, thus (QCQP)
is the same as

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m
X � 0, rank(X) = 1.

(QCQP)

• The constraints Tr(AiX) Di bi are easy, but rank(X) = 1 is hard.

• Key Insight: Drop the rank-one constraint to obtain a relaxed QCQP

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0.

(SDR)

(SDR) is a convex problem.

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 12



Some Merits We Can Immediately Say

• The SDR
min
X∈Sn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m
(SDR)

is a semidefinite program (SDP), whose globally optimal solution may be found
by available numerical algorithms in polynomial time (often by interior-point
methods, in O(max{m,n}4n1/2 log(1/ǫ)), ǫ being soln. accuracy).

• For instance, using the software toolbox CVX, we can solve (SDR) in MATLAB
with the following lines: (for simplicity we assume ‘ Di’ = ‘≥’ for all i here)

cvx begin

variable X(n,n) symmetric

minimize(trace(C*X));

subject to

for i=1:m

trace(A(:,:,i)*X) >= b(i);

end

X == semidefinite(n)

cvx end
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Issues with the Use of SDR

• There is no free lunch in turning the NP-hard (QCQP) to the convex, polynomial-
time solvable (SDR).

• The issue is how to convert an SDR solution to an approximate QCQP solution.

• If an SDR solution, say, denoted by X⋆, is of rank one; or, equivalently,

X⋆ = x⋆x⋆T ,

then x⋆ is feasible— and in fact optimal— to (QCQP).

• But the case of rank-one SDR solutions does not always hold (otherwise we
would have solved an NP-hard problem in polynomial time!).

• There are many ways to produce an approximate QCQP solution from X⋆, for
instances where rank(X⋆) > 1.
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QCQP Solution Approximation in SDR: An Example

• Consider again the BQP

min xTCx

s.t. x2
i = 1, i = 1, . . . , n.

(BQP)

The SDR of (BQP) is

min Tr(CX)
s.t. X � 0, Xii = 1, i = 1, . . . , n.

(SDR)

• An intuitively reasonable idea (true even for engineers) is to apply a rank-1
approximation to the SDR solution X⋆:

1) Carry out the eigen-decomposition

X⋆ =
∑r

i=1 λiqiq
T
i ,

where r = rank(X⋆), λ1 ≥ λ2 ≥ . . . ≥ λr > 0 are the eigenvalues and
q1, . . . , qr ∈ Rn the respective eigenvectors.

2) Approximate the BQP by x̂ = sgn(
√
λ1q1).
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Application: MIMO Detection

Scenario: A spatial multiplexing system with Mt transmit & Mr receive antennae.

Spatial
Multiplexer

. . . . . 
.

. . . . . 
.

MIMO
Detector

Symbols
s
C

Detected
Symbols

MIMO channel
H

C

Objective: detect symbols from the received signals, given channel information.

• Received signal model:
yC = HCsC + vC

where HC ∈ CMr×Mt is the MIMO channel, sC ∈ CMt is the transmitted
symbol vector, & vC ∈ CMr is complex circular Gaussian noise.

• Assume QPSK constellations, sC ∈ {±1± j}Mt.
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• Problem: maximum-likelihood (ML) detection (NP-hard)

ŝC,ML = arg min
sC∈{±1±j}Mt

‖yC −HCsC‖2.

• The received signal model can be converted to a real form

[
Re{yC}
Im{yC}

]

︸ ︷︷ ︸

y

=
[
Re{HC} −Im{HC}
Im{HC} Re{HC}

]

︸ ︷︷ ︸

H

[
Re{sC}
Im{sC}

]

︸ ︷︷ ︸

s∈{±1}2Mt

+
[
Re{vC}
Im{vC}

]

︸ ︷︷ ︸

v

,

and hence the ML problem can be rewritten (homogenized) as

min
s∈{±1}2Mt

‖y −Hs‖2 = min
s∈{±1}2Mt,t∈{±1}

‖ty −Hs‖2

= min
s∈{±1}2Mt,t∈{±1}

[
sT t

]
[
HTH −HTy

−yTH ‖y‖2
] [

s

t

]

,

which is a BQP. Subsequently, SDR can be applied [Tan-Rasmussen’01],
[Ma-Davidson-Wong-Luo-Ching’02].
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mean square error with decision feedback; ‘LRA’— lattice reduction aided. ‘Randomization’ will be

explained shortly.
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Additional Remarks about the MIMO Detection Application

• The idea is not restricted to spatial multiplexing! It can also be used in multiuser
CDMA, space-time/freq./time-freq. coding, multiuser MIMO, and even blind
MIMO [Li-Bai-Ding’03], [Ma-Vo-Davidson-Ching’06],...

• Extensions that have been considered:

– MPSK constellations [Ma-Ching-Ding’04];
– higher-order QAM constellations [Ma-Su-Jaldén-Chang-Chi’09] (and refs.

therein);
– soft-in-soft-out MIMO detection (a.k.a. BICM-MIMO) [Steingrimsson-Luo-

Wong’03];
– fast implementations [Kisialiou-Luo-Luo’09], [Wai-Ma-So’11].

• Performance analysis for SDR MIMO detection:

– diversity analysis [Jaldén-Ottersten’08]
– probabilistic approximation accuracy analysis [Kisialiou-Luo’10], [So’10].
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Alternative Interpretation of SDR: Solving QCQP in

Expectation

• We return to the SDR solution approximation issue. Recall

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(QCQP)

• Let ξ ∼ N (0,X) where X is the covariance. Consider a stochastic QCQP:

min
X∈Sn, X�0

Eξ∼N (0,X){ξTCξ}
s.t. Eξ∼N (0,X){ξTAiξ} Di bi, i = 1, . . . ,m,

(E-QCQP)

where we manipulate the statistics of ξ so that the objective function is minimized
& constraints are satisfied in expectation.

• One can show that (E-QCQP) is the same as the SDR

min Tr(CX)
s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

(SDR)
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• The stochastic QCQP interpretation of SDR

min
X∈Sn

Eξ∼N (0,X){ξTCξ}
s.t. Eξ∼N (0,X){ξTAiξ} Di bi, i = 1, . . . ,m

(E-QCQP)

essentially sheds lights into a different way of approximating QCQP.

• What we could do is the following: generate a random vector ξ ∼ N (0,X⋆)
(X⋆ is an SDR soln.), and modify ξ so that it is QCQP-feasible.

• Such a randomized QCQP soln. approx. may be performed multiple times, to
get a better approx.

• (Believe it or not) The stochastic QCQP interpretation is the intuition behind
many important theoretical SDR approx. accuracy results, including the famous
Goemans-Williamson result [Goemans-Williamson’95]. (to be covered in
Part II)
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Example: Randomization in BQP or MIMO Detection

A simple (and very important) example for illustrating randomizations is BQP:

min xTCx

s.t. x2
i = 1, i = 1, . . . , n.

(BQP)

Box 1. Gaussian Randomization Procedure for BQP
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ N (0,X⋆), and construct a feasible point

x̃ℓ = sgn(ξℓ).

end
determine ℓ⋆ = arg min

ℓ=1,...,L
x̃T
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as an approximate solution to (BQP).
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Complex-valued QCQP and SDR

• Consider a general complex-valued QCQP

min
x∈Cn

xHCx

s.t. xHAix Di bi, i = 1, . . . ,m,
(1)

where C,A1, . . . ,Am ∈ Hn; Hn denotes the set of n× n Hermitian matrices.

• Using the same idea, SDR can be derived for complex-valued QCQP:

min
X∈Hn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

The only difference is that the problem domain now is Hn (change ‘symmetric’
to ‘hermitian’ in your CVX code).

• Note that while the ideas leading to real and complex SDRs are the same, their
performance may be different (will elaborate upon later).
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Application: Multicast Transmit Beamforming

Scenario: Common information broadcast in multiuser MISO downlink, assuming
channel state information at the transmitter (CSIT).

• The transmit signal:

x(t) = ws(t),

where s(t) ∈ C is the tx. data stream, &
w ∈ CNt is the tx. beamvector.

• Received signal for user i:

yi(t) = hH
i x(t) + vi(t),

where hi ∈ CNt is the channel of user i, &
vi(t) is noise with variance σ2

i .

⋮

Basestation

User 1

User 2
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• Consider a QoS-assured design:

min
w∈CNt

‖w‖2

s.t. SNRi ≥ γi, i = 1, . . . , K,

where each γi is a prescribed SNR requirement for user i, and

SNRi = E{|hH
i ws(t)|2}/σ2

i = wHRiw/σ2
i ,

Ri =

{
hih

H
i , hi is available (instant CSIT),

E{hih
H
i }, hi is random with known 2nd order stat. (stat. CSIT).

• The design problem can be rewritten as a complex-valued QCQP

min ‖w‖2
s.t. wHAiw ≥ 1, i = 1, . . . ,K,

where Ai = Ri/γiσ
2
i .

• This multicast problem is NP-hard in general, but can be approximated by SDR
[Sidiropoulos-Davidson-Luo’06].
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A Randomization Example Relevant to Multicast Beamforming
Consider the problem

min xHCx

s.t. xHAix ≥ 1, i = 1, . . . ,m,
(†)

where C,A1, . . . ,Am � 0.

Box 2. Gaussian Randomization Procedure for (†)
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ CN (0,X⋆), and construct a feasible point

x̃ℓ =
ξℓ

√

mini=1,...,m ξHℓ Aiξℓ

end
determine ℓ⋆ = arg min

ℓ=1,...,L
x̃H
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as an approximate solution to (†).
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v(w) = ‖w‖2 is the objective value, vSDR is the optimal value of SDR. Note that for any feasible

w, v(w)/vSDR ≥ vQP/vSDR where vQP is the optimal value of QCQP. Courtesy to T.-H. Chang

and Z.-Q. Luo.
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Extension to Complex-Valued Separable QCQP

• Consider a further extension, called complex-valued separable QCQP:

min
x1,...,xk∈Cn

∑k
i=1x

H
i Cixi

s.t.
∑k

l=1x
H
l Ai,lxl Di bi, i = 1, . . . ,m.

• By writing Xi = xix
H
i for all i, and then “semidefinite-relaxing” them, we

obtain an SDR

min
X1,...,Xk∈Hn

∑k
i=1Tr(CiXi)

s.t.
∑k

l=1Tr(Ai,lXi) Di bi, i = 1, . . . ,m,
X1 � 0, . . . ,Xk � 0.
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Application: Unicast Transmit Downlink Beamforming

Scenario: multiuser MISO downlink; each user receives an individual data stream.

⋮

Basestation

User 1

User 2

• Transmit signal:

x(t) =
K∑

i=1

wisi(t),

where si(t) ∈ C is the data stream for user i, &
wi ∈ CNt its tx. beamvector.

• Received signal of user i:

yi(t) = hH
i x(t) + vi(t)

= hH
i wisi(t) +

∑

l 6=i

hH
i wlsl(t)

︸ ︷︷ ︸
interference

+vi(t).

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 31



• The signal-to-interference-and-noise ratio (SINR) of user i:

SINRi =
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

,

where Ri = hih
H
i for instant. CSIT, and Ri = E{hih

H
i } for stat. CSIT.

• Consider the QoS-assured design:

min
w1,...,wK∈CNt

∑K
i=1 ‖wi‖2

s.t.
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

≥ γi, i = 1, . . . , K
(†)

and its SDR

min
W 1,...,WK∈HNt

∑K
i=1Tr(W i)

s.t. Tr(RiW i) ≥ γi(
∑

l 6=iTr(RiW l) + σ2
i ), i = 1, . . . ,K,

W 1, . . . ,WK � 0.

(‡)

• (‡) is shown to have a rank-one solution forR1, . . . ,RK � 0, via uplink-downlink
duality [Bengtsson-Ottersten’01]; SDR is optimal to (†), so to speak!

• Part II will introduce an “easy” way to identify rank-one SDR instances.
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Additional Remarks about the Transmit Beamforming Application

• Transmit beamforming is now a key topic; see [Gershman-Sidiropoulos-
Shahbazpanahi-Bengtsson-Ottersten’10], [Luo-Chang’10] for review.

• Apart from standard transmit beamforming, we have seen numerous extensions:

– one-way relay beamforming [Fazeli-Dehkordy-Shahbazpanahi-Gazor’09],
[Chalise-Vandendorpe’09];

– two-way relay beamforming (a.k.a. analog network coding) [Zhang-Liang-
Chai-Cui’09];

– cognitive radio beamforming [Zhang-Liang-Cui’10];
– multicell coordinated beamforming [Bengtsson-Ottersten’01], [Dahrouj-

Yu’10];
– secrecy beamforming [Liao-Chang-Ma-Chi’10], [Li-Ma’11].

• Interestingly, all these beamforming problems turn out to be, or be closely related
to, nonconvex QCQPs.

• And, as it turns out, SDR plays a key role.
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SDR Versus Nonlinear Programming: They complement, not

compete

• Since SDR is an approximation method, as an alternative one may choose to
approximate (QCQP) by a nonlinear programming method (NPM) (like, SQP in
the MATLAB Optimization Toolbox).

• So should we compare SDR and NPM?

• The interesting argument is that they complement each other, instead of
competing:

– An NPM depends much on a ‘good’ starting point, and that’s usually the
missing piece.

– To SDR, NPMs may serve as a local refinement of the solution.

• One may consider a two-stage approach where SDR is used as a starting point
for NPMs.
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Application: Transmit B1 Shim in MRI

• In MRI, a transmit RF coil array is used to generate a B1 field.

RF Coils
...........Load

• An undesirable effect is that the B1 field exhibits strong inhomogeneity (spatial
non-uniformity) across the load, due to complex interactions between the
magnetic field and the loaded tissues.

• The goal is to design the transmit amplitudes and phases of the RF coils such
that the resultant B1 map is as uniform as possible.
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RF Coils

...........Load

• Let ai ∈ Cn, i = 1, . . . ,m, be the field response from the array to the ith pixel
(MISO); i.e., the ith pixel receives a B1 field of magnitude |aT

i x|.

• The design problem is to minimize the worst-case field magnitude difference

min
x∈Cn

max
i=1,...,m

∣
∣|aT

i x|2 − b2
∣
∣

s.t. xHGx ≤ ρ.

Here, x ∈ Cn is the transmit vector of the RF coil array, m is the total no. of
pixels, b > 0 is the desired pixel value (uniform over all pixels), xHGx is an
average specific absorption rate (SAR), and ρ is a pre-specified SAR limit.

• It can be approximated by SDR [Chang-Luo-Wu et al.’08].
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nonlinear prog. 
with random 

starting point, 
realization 1

nonlinear prog. 
with random 

starting point, 
realization 2

SDR with 
randomization, 

realization 1

SDR with
randomization, 

realization 2

two-stage opt.: 
SDR w/ rand.

 +nonlinear prog.,
realization 1

two-stage opt.: 
SDR w/ rand.

 +nonlinear prog.,
realization 2

without 
optimization

(a) (b) (c) (d) (e) (f) (g)

obj. value=
24.56

obj. value=
3.364

obj. value=
6.330

obj. value=
6.049

obj. value=
6.009

obj. value=
3.244

obj. value=
3.310

5

0

2.5

B1 maps of various optimization methods. You can see that the two-stage, SDR+NPM method

shows better solution fidelity.
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Part II: Theory
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Provable Approximation Accuracies: Motivation

• So far we have introduced several procedures for generating an approximate
QCQP solution from an SDR solution.

• A natural question arises: How good are these procedures?

– Of course, their performance can be observed empirically. However, can we
prove something about their approximation accuracy?

– Such theoretical results can provide strong justification for the use of SDR in
various problem settings.

• To measure the performance of a particular procedure, one intuitive approach is
to quantify the gap between the objective value of the QCQP solution generated
by the procedure and the optimal value of the QCQP.
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Provable Approximation Accuracies: Setup

• Let v(x) = xTCx, and denote the optimal values of (QCQP) and (SDR) by

vQP = min xTCx

s.t. xTAix Di bi, i = 1, . . . ,m;
vSDR = min Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

Moreover, let x̂ be an approximate solution to (QCQP), obtained using one of
the solution generation procedures (e.g., randomization). Note that

v(x̂) ≥ vQP.

• We are interested to know if there exists a finite number γ ≥ 1 (called the
approximation ratio) such that

v(x̂) ≤ γvQP

either in expectation, or with high probability, or almost surely (since x̂ can be
random). In general, the smaller γ, the better the solution generation procedure.
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Provable Approximation Accuracies: Remarks

• In the definition of approximation ratio, we are implicitly assuming that
vQP, vSDR > 0.

– The notion of approximation ratio can be defined for problems where vQP ≤ 0.
However, we shall not go there in this tutorial.

• Given a solution generation procedure, we are usually interested in its
performance on arbitrary instances of (QCQP). Thus, the approximation ratio γ
should not depend on the problem data {A1, . . . ,Am, b,C}. However, it could
depend on the problem dimensions m,n.

• For quadratic maximization problems, the notion of approximation ratio can be
defined similarly.

• The problem of proving approximation accuracies has been of great interest to
optimization theorists, and it has enormous implications in practice.
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The Seminal Approx. Accuracy Result by Goemans &

Williamson

• Consider
vQP = max

x∈Rn
xTCx

s.t. x2
i = 1, i = 1, . . . , n

with C � 0, Cij ≤ 0 for all i 6= j (the so-called MAXCUT in combinatorial
optimization).

• In [Goemans-Williamson’95], it was shown that if the randomization procedure
in Box 1 is used, then

γvQP ≤ E{v(x̂)} ≤ vQP,

where γ ≈ 0.87856.

• In particular, the approximation ratio is independent of the problem dimension
n. In the context of MAXCUT, this means that the approximation accuracy is
independent of the number of vertices in the graph.
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Complex k-ary Quadratic Maximization

• Consider the problem

vQP = max
x∈Cn

xHCx

s.t. xi ∈ {1, ω, . . . , ωk−1}, i = 1, . . . , n,
(CQP-k)

where C � 0 and ω = exp(j2π/k) is the kth root of unity, for some given
integer k ≥ 2.

– This is a generalization of the problem considered by Goemans and Williamson.

• Since |xi|2 = 1 for all i, (CQP-k) can be handled by SDR. Specifically,

vSDR = max
X∈Hn

Tr(CX)

s.t. X � 0, Xii = 1, i = 1, . . . , n.
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Randomization Procedure for Complex k-ary Quad. Max.

• Again, a Gaussian randomization procedure can be used to generate a feasible
solution to (CQP-k) from an SDR solution.

Box 3. Gaussian Randomization Procedure for CQP-k
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ CN (0,X⋆), and construct the feasible point x̃ℓ ∈ Cn,
where [x̃ℓ]i = f([ξℓ]i) and

f(z) =







1, arg(z) ∈ [−π/k, π/k),
ω, arg(z) ∈ [π/k, 3π/k),
... ...
ωk−1, arg(z) ∈ [(2k − 3)π/k, (2k − 1)π/k).

end
determine ℓ⋆ = arg max

ℓ=1,...,L
x̃H
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as the approximate solution to (CQP-k).
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Pictorial Illustration of the Randomization Procedure, for k = 3

...

...

..
.
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Approx. Accuracy Result for Complex k-ary Quad. Max.

• In [So-Zhang-Ye’07], it is shown that if the randomization procedure in Box 3
is used, then

γvQP ≤ E{x̂H
Cx̂} ≤ vQP,

where γ =
(k sin(π/k))2

4π
.

• If we take k = ∞, then the k-ary constraints in (CQP-k) become

|xi| = 1, i = 1, . . . , n. (†)

In [So-Zhang-Ye’07] it is shown that by letting the function f in Box 3 to be

f(z) =

{
z/|z|, |z| > 0,
0, |z| = 0,

the randomization procedure would yield γ = π/4 for the unit-modulus
constraints (†). It is interesting (and comforting) to note that

lim
k→∞

(k sin(π/k))2

4π
=

π

4
.
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Applications of Complex k-ary Quadratic Maximization

• (CQP-k) has many applications in signal processing, e.g.:

– blind orthogonal space-time block code detection [Zhang-Ma’09]
– radar code waveform design [De Maio et al.’09]
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problem approx. accuracyγ; see (21)-(22) for def. references
Boolean QP

max
x∈Rn

xT Cx

s.t. x2

i = 1, i = 1, . . . , n γ =







0.87856, C � 0, Cij ≤ 0 ∀i 6= j
2/π ≃ 0.63661, C � 0

1 (opt.), Cij ≥ 0, ∀i 6= j

Goemans-Williamson [2],
Nesterov [3], Zhang [6].
Relevant applications: [24]–[26]

Complexk-ary QP

max
x∈Cn

xHCx

s.t. xi ∈ {1, ω, . . . , ωk−1},
i = 1, . . . , n

whereω = ej2π/k, andk > 1 is an integer.

For C � 0,

γ =
(k sin(π/k))2

4π
.

e.g.,γ = 0.7458 for k = 8, γ = 0.7754 for k = 16.

Zhang-Huang [7],
So-Zhang-Ye [8].
Relevant applications: [27], [37]

Complex constant-modulus QP

max
x∈Cn

xHCx

s.t. |xi|2 = 1, i = 1, . . . , n

For C � 0,
γ = π/4 = 0.7854.

Remark: coincide with complexk-ary QP ask → ∞.

Zhang-Huang [7],
So-Zhang-Ye [8].

max
x∈Cn

xHCx

s.t. (|x1|2, . . . , |xn|2) ∈ F

whereF ⊂ Rn is a closed convex set.

The same approx. ratio as in complex constant-modulus QP;
i.e., γ = π/4 for C � 0.

If the problem is reduced to the real-valued case, then the
approx. ratio results are the same as that in Boolean QP.

Ye [4], Zhang [6].

max
x∈Rn

xT Cx

s.t. xT Aix ≤ 1, i = 1, . . . , m

whereA1, . . . , Am � 0.

For anyC ∈ Sn,

γ =
1

2 ln(2mµ)

whereµ = min{m, maxi rank(Ai)}.

Nemirovski-Roos-Terlaky [5].
Extensions: Ye [72], Luo-Sidiropoulos-
Tseng-Zhang [9] and So-Ye-
Zhang [71].

Known approximation accuracies for quadratic maximization problems. The reference numbers

refer to those in our Signal Processing Magazine article.
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Approx. Accuracy Result for Quadratic Minimization

• Consider now the problem

vQP = min
x∈Rn

xTCx

s.t. xTAix ≥ 1, i = 1, . . . ,m
(†)

for C,A1, . . . ,Am � 0, which arises in the study of multicast downlink
beamforming.

• It was shown in [Luo-Sidiropoulos-Tseng-Zhang’07] that if the randomization
procedure in Box 2 is used, then with high probability (instead of just in
expectation),

vQP ≤ v(x̂) ≤ γvQP,

where γ = 27m2/π.

– For the complex version of (†), one has a better approximation ratio: γ = 8m.

• Notice that this ratio accommodates the worst possible problem instance
{C,A1, . . . ,Am}. In practice, the approximation accuracies are usually much
better— a phenomenon that deserves further investigation.
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Interpretation in Multicast Transmit Beamforming

• Recall that in the context of multicast transmit beamforming, we encounter the
following optimization problem:

min
w∈CN

‖w‖2

s.t. SNRi =
1

γiσ2
i

wHRiw ≥ 1, i = 1, . . . , K,

which is an instance of the quadratic minimization problem considered in [Luo-
Sidiropoulos-Tseng-Zhang’07].

• The aforementioned approximation accuracy result thus says that SDR together
with the randomization procedure can produce a transmit beamforming vector
that satisfies all the prescribed SNR requirements and whose power is at most
8m times the optimal.

• Again, this is just a worst-case guarantee. In practice, the performance is usually
much better.
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problem approx. accuracyγ; see (18)-(19) for def. references

min
x∈Cn

xHCx

s.t. xHAix ≥ 1, i = 1, . . . , m

whereA1, . . . , Am � 0.

γ = 8m.

If the problem is reduced to the real-valued case, then

γ =
27m2

π
.

Luo-Sidiropoulos-Tseng-Zhang [9]; see
also So-Ye-Zhang [71].
Relevant applications: [29]

MIMO Detection

min
x∈Rn

‖y − Hx‖2

2

s.t. x2

i = 1, i = 1, . . . , n

wherey = Hs+v; H ∈ Cn×n has i.i.d. standard
complex Gaussian entries;s2

i = 1 for i = 1, . . . , n;
andv ∈ Cn has i.i.d. complex mean zero Gaussian
entries with varianceσ2.

For σ2 ≥ 60n (which corresponds to the low signal-to-noise
ratio (SNR) region), with probability at least1−3 exp(−n/6),

γ ≤
11

2
.

For σ2 = O(1) (which corresponds to the high SNR region),
with probability at least1 − exp(−O(n)),

γ = 1,

i.e. the SDR is tight.

Kisialiou-Luo [67], So [69].
Extensions: So [68], [69].
Related: Jaldén-Ottersten [66].
Relevant applications: [17]–[20], [22],
[23]

Known approximation accuracies for quadratic minimization problems. The reference numbers

refer to those in our Signal Processing Magazine article.
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Rank Reduction in SDR

• Now you may notice that an SDR methodology basically has the following steps:

1) formulate a hard problem (nonconvex QCQP) as a rank-one-constrained SDP
2) remove the rank constraint to obtain an SDP
3) use some methods, such as randomizations, to produce an approximate

solution to the original problem.

• Apparently, the lower the rank of the SDP solution, the better the approximation
we would expect.

• Unfortunately, we cannot guarantee a low rank solution for the SDP in general.

• But we can identify special cases where the SDP solution rank is low, and,
sometimes, even equal to one.
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Shapiro-Barvinok-Pataki (SBP) Result

• Consider the real-valued SDP (or SDR)

min
X∈Sn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.
(SDR)

SBP Result [Pataki’98]: There exists an optimal solution X⋆ such that

rank(X⋆)(rank(X⋆) + 1)

2
≤ m.

• In particular, SBP result implies that for m ≤ 2, a rank-1 X⋆ exists. Hence,

For a real-valued QCQP with m ≤ 2, SDR is tight; i.e., solving the SDR is
equivalent to solving the original QCQP.

• Note that a rank reduction algorithm may be required to turn an SDP solution
to a rank-one solution [Ye-Zhang’03].
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Complex Extension of the Rank Reduction Result

• Let us consider the extension to the complex-valued SDP

min
X∈Hn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

• In this case, the SBP result can be generalized to [Huang-Zhang’07]

rank(X⋆)2 ≤ m,

and the direct consequence is that

For a complex-valued QCQP with m ≤ 3, SDR is tight; i.e., solving the
SDR is equivalent to solving the original QCQP.

• A complex rank-1 decomposition algorithm for m ≤ 3 is available [Huang-
Zhang’07].

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 54



Application Revisited: Multicast Beamforming

• Recall the multicast beamforming problem:

min
w∈CNt

‖w‖2

s.t. SNRi =
wRiw

σ2
i

≥ γi,

i = 1, . . . , K,

K being the number of users.

⋮

Basestation

User 1

User 2

• By the SBP result, SDR solves the multicast problem optimally for K ≤ 3.
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Further Extension of the Rank Reduction Result

• Recall the problem

min
X1,...,Xk∈Hn

∑k
i=1Tr(CiXi)

s.t.
∑k

l=1Tr(Ai,lXi) Di bi, i = 1, . . . ,m,
X1 � 0, . . . ,Xk � 0,

which is an SDR of the so-called separable QCQP.

• A generalization of the SBP result [Huang-Palomar’09]:

∑k
i=1 rank(X

⋆
i )

2 ≤ m,

and, as a subsequent result:

Suppose that an SDR solution cannot have X⋆
i = 0 for any i. Then SDR

is tight for m ≤ k + 2.
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Application Revisited: Unicast Beamforming

⋮

Basestation

User 1

User 2

• Recall the design problem

min
w1,...,wK∈CNt

∑K
i=1 ‖wi‖2

s.t.
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

≥ γi,

i = 1, . . . , K,

(†)

which is a separable QCQP with K variables
(beamvectors) and K constraints (SINR req.).

• By the SBP result, SDR solves (†) optimally for any R1, . . . ,RK, regardless of
Ri � 0 or not.

• And hey, it’s still fine if you put two more quadratic constraints in (†)!
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Further Results in SDR Rank Reduction: Motivation

• As we have seen before, it is not possible in general to find a low-rank solution
to a QCQP in polynomial time, unless the number of constraints is small.

– In fact, most polynomial-time interior-point algorithms will return a solution
that has the highest rank.

• In such situations, can we find a low-rank solution that has good approximation
accuracy?

– The randomization procedure introduced before can generate a rank-one
solution with good approximation accuracy.

– How about a rank-r solution, where r ≥ 2 is fixed and small? This has
applications in sensor network localization, which will be covered later.
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Further Results in SDR Rank Reduction: Setup

• Consider the following rank-constrained semidefinite feasibility problem
(RCSDF):

find X � 0, rank(X) ≤ r
s.t. Tr(AiX) = bi, i = 1, . . . ,m,

(RCSDF)

where A1, . . . ,Am � 0, b1, . . . , bm ≥ 0 and r ≥ 1 are given.

• What is the relationship between (RCSDF) and the QCQPs we studied before?

– For instance, consider the QCQP

min xTCx

s.t. xTAix ≥ 1, i = 1, . . . ,m,

where C,A1, . . . ,Am � 0. Let x⋆ be an optimal solution.
– Then, X⋆ = x⋆x⋆T is feasible for the following RCSDF problem:

find X � 0, rank(X) ≤ 1
s.t. Tr(AiX) = Tr(AiX

⋆), i = 1, . . . ,m,
Tr(CX) = Tr(CX⋆).
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Further Results in SDR Rank Reduction: Setup

• There are two difficulties in solving (RCSDF):

– There is no known polynomial-time algorithm for solving (RCSDF) in general.
– The problem may be infeasible.

• It is thus natural to study “easier” versions of (RCSDF). For instance, consider

find X � 0, rank(X) ≤ r
s.t. α · bi ≤ Tr(AiX) ≤ β · bi, i = 1, . . . ,m,

(RCSDF-R)

where α, β are some parameters.

– Note that when α = β = 1, we get back (RCSDF).

• Question: Under what conditions on α and β would (RCSDF-R) be feasible, and
a feasible solution can be found efficiently?
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SDR Rank Reduction: The So-Ye-Zhang (SYZ) Theorem

• Suppose there exists an X⋆ � 0 such that Tr(AiX
⋆) = bi for i = 1, . . . ,m.

• [So-Ye-Zhang’08] One can find in randomized polynomial time a rank-r X̂

such that
α · bi ≤ Tr(AiX̂) ≤ β · bi for i = 1, . . . ,m

with high probability, where

α =







1

e(2m)2/r
, 1 ≤ r ≤ 4 ln(2m),

max

{

1

e(2m)2/r
, 1−

√

4 ln(2m)

r

}

, r > 4 ln(2m),

β =







1 +
12 ln(4mq)

r
, 1 ≤ r ≤ 12 ln(4mq),

1 +

√

12 ln(4mq)

r
, r > 12 ln(4mq),

q = min{
√
2m,n}.
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• Some quick remarks:

– The larger the r, the closer α, β are to 1. Intuitively, r dictates how much
information about X⋆ we can keep.

– From the definition of q, it is clear that the bounds can be made independent
of n, the dimension of the matrices.
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Randomization Procedure for SDR Rank Reduction

• How to achieve the claimed bounds? (Surprise) Use Gaussian randomization!

Box 4. Gaussian Randomization Procedure for Rank Reduction
given a solution X⋆ that satisfies Tr(AiX

⋆) = bi for all i and X⋆ � 0,
and an integer r ≥ 1.

for ℓ = 1, . . . , r
generate ξℓ ∼ N (0,X⋆);

end

output X̂ =
1

r

r∑

ℓ=1

ξℓξ
T
ℓ as the candidate solution.

– Why this works? Intuitively,

X̂ � 0, rank(X̂) ≤ r, E{X̂} = X⋆.

– This extends our previous rank-1 Gaussian randomization procedures.
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An Application of the SYZ Theorem

• Let G = (V,E) be a graph (e.g., the communication graph of a sensor network).

• Assumption: Suppose that we are given a set of nonnegative weights {dij :
(i, j) ∈ E}, and that there exist vectors v1, . . . ,vn ∈ Rℓ for some ℓ ≥ 1 with

‖vi − vj‖2 = d2ij, (i, j) ∈ E.

• Question: Can we find vectors u1, . . . ,un in a lower dimensional space, say R2,
such that

‖ui − uj‖2 = d2ij, (i, j) ∈ E?

• In general, this is not possible. However, the SYZ theorem asserts that if we
allow some distortion in the distances, then such vectors can be found.

– The amount of distortion depends on how low the dimension of the space in
which we need to embed the points v1, . . . , vn.

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 64



Finding the Low Dimensional Vectors

• The assumption implies that the following system is feasible:

Xii − 2Xij +Xjj = d2ij, (i, j) ∈ E; X � 0. (†)

• Indeed, let X⋆ = [ v1, . . . ,vn ]T [ v1, . . . ,vn ] � 0, so that X⋆
ij = vT

i vj.
Then, we have

X⋆
ii − 2X⋆

ij +X⋆
jj = vT

i vi − 2vT
i vj + vT

j vj = d2ij, (i, j) ∈ E.

– A side observation: rank(X⋆) ≤ ℓ.

• Note that (†) can be written as

Tr(EijX) = d2ij, (i, j) ∈ E; X � 0,

where Eij = (ei − ej)(ei − ej)
T .
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• Hence, our problem becomes

find X � 0, rank(X) ≤ 2
s.t. Tr(EijX) = d2ij, (i, j) ∈ E.

• By the SYZ theorem, we can find an X̂ � 0 with rank(X̂) ≤ 2 and

1

2e|E|d
2
ij ≤ Tr(EijX̂) ≤ (1 + 6 ln(4q|E|)) d2ij, (i, j) ∈ E, (†)

where q = min{
√

2|E|, n}.

• Let X̂ = [ u1, . . . ,un ]T [ u1, . . . ,un ] be the Cholesky factorization of X̂,
where u1, . . . ,un ∈ R2. Then (†) says that

Ω

(
1

|E|

)

· d2ij ≤ ‖ui − uj‖2 ≤ O (ln(|E|)) · d2ij, (i, j) ∈ E.
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Part III.A: MIMO Detection
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Introduction

• MIMO detection is an important topic with a wide scope of applicability.

• The goal is to achieve good symbol error probability performance, preferably
near-optimal, in a computationally efficient manner.

• Note that SDR is not the only efficient high-performance MIMO detection
approach. The sphere decoding approach and the lattice reduction aided (LRA)
approach are also powerful.

• Our focus:

– computational or implementation aspects of SDR;

– alternative interpretations of SDR; connections to other MIMO detectors;

– SDR for various types of constellations (we went thro’ {±1} so far);

– benchmarking SDR and representative MIMO detectors, through extensive
simulation results .
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Problem Statement

• Consider a generic complex-valued MC ×NC MIMO model

yC = HCsC + vC,

where

HC ∈ CMC×NC the MIMO channel;
sC ∈ SNC the tx symbol vector, with S ⊂ C being the constellation set;
vC ∈ CMC complex AWGN.

• We will focus on the ML detection problem

ŝC,ML = arg min
sC∈SNC

‖yC −HCsC‖2.

• Constellations:

– QPSK: S = { s = a+ jb | a, b ∈ {±1} }
– M -ary PSK (MPSK): S = { s = ej2πk/M | k = 0, 1, . . . ,M − 1 }
– 4q-ary QAM: S = { s = a+ jb | a, b ∈ {±1,±3, . . . ,±(2q−1 − 1)} }
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Scope of Applicability

• The simple MIMO model yC = HCsC + vC is popularly used in the point-to-
point spatial multiplexing scenario.

Spatial
Multiplexer

. . . . . 
.

. . . . . 
.

MIMO
Detector

Symbols
s
C

Detected
Symbols

MIMO channel
H

C

• Actually, this MIMO model is general enough to cover a wide variety of digital
communication scenarios.

• As such, MIMO detection methods developed for the generic MIMO model can
be universally applied to many different scenarios.
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Example: CDMA Multiuser Detection

User 1

User 2 User 

Base station

………………

• Consider a multiuser CDMA scenario. rx signal model over one symbol interval:

y =
K∑

i=1

ciαisi + v,

where y ∈ CN is the rx code vector; ci ∈ CN spreading code sequence vector of
user i; si tx symbol of user i; αi ∈ C rx amplitude/phase coefficient of user i.

• can be rewritten as yC = HCsC + vC (obviously).
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Example: Space-Time Block Coding

• Consider a point-to-point space-time block code (STBC) scenario:

Y = HCC(sC) + V ,

where HC ∈ CMr×Mt the MIMO channel; C(sC) ∈ CMt×T is an STBC;
Y ∈ CMr×T is the rx space-time code block, T being the time length.

• Assume a linear dispersion STBC:

C(sC) =
L∑

l=1

AlRe{sC,l}+BlIm{sC,l}.

• The rx model can be converted to the generic MIMO form:

vec(Y ) = (I ⊗HC)X
︸ ︷︷ ︸

“another HC”

s̃+ vec(V ),

where X = [ vec(A1), . . . , vec(AL), vec(B1), . . . , vec(BL) ] ∈ CMtT×2L, s̃ =
[ Re{sC}T , Im{sC}T ]T ∈ R2L.
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Example: Space-Time Frequency Coding

• Scenario: point-to-point MIMO OFDM in the presence of frequency selective
multipath channels.

Space-

Frequency

Block Code 

Encoder
Tx 

subcarrier

Rx 1

…
… Space-

Frequency

Block Code 

Decoder

1 ……Tx 1 2 1 ……2

1 ……2

subcarrier

Rx1 ……2

…
…

• Goal: precode across space and frequency, to harvest space and multipath
diversity, esp., full space-multipath diversity.
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• Let us have a case study on the algebraic space-frequency code (SFC) scheme
[Su-Safar-Liu’05].

Subcarrier 

Transmit Antenna

.   .   .

..
.

Tx 1

Tx 2

Transmit Antenna

...

Tx 

Subcarrier 

• Operations:

– Subcarriers are partitioned into groups;
– In each group, symbols are precoded;
– Precoded symbols (x above) are appropriately interleaved in space and

frequency.
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• Assume one rx antenna, for ease of illustration.

• The rx signal model in each group can be represented by

y = DHx+ v,

x = Θs,

where
x ∈ CΓMt the precoded symbol vector;
Θ ∈ CΓMt×ΓMt the precoder matrix;
s ∈ SΓMt the tx symbol vector;
DH ∈ CΓMt×ΓMt a diagonal matrix whose diagonals contain channel freq.

responses (dependent on the SFC interleaving pattern).

• A properly designed Θ can lead to full space-multipath diversity d = MtL,
where Mt is the no. of tx antennas & L is the no. of multipaths. To do so, one
should choose Γ ≥ L.

• The rx model can again be written as the generic form yC = HCsC+vC. Note
that the problem size in this example, ΓMt, may be large.
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Efficient High-Performance Approaches other than SDR

• Sphere decoders [Mow’92], [Viterbo-Biglieri’93], [Damen-El-Gamal-
Caire’03]:

– An exact ML solver based on branch and bound, or tree search;

– Empirical experience with its runtime performance: very fast for high SNRs
and small to moderate problem sizes NC; can be (very) slow otherwise;

– Exponential complexity w.r.t. the problem size [Jaldén-Ottersten’05].

• Lattice reduction aided (LRA) detectors [Yao-Wornell’02], [Wübben-
Seethaler-Jaldén-Matz’11]:

– Use lattice reduction to improve the channel “conditioning”;

– Interface well with linear and decision feedback detectors;

– Exhibit good diversity or diversity multiplexing tradeoff performance
[Taherzadeh-Mobasher-Khandani’07], [Jaldén-Elia’10].
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Inhomogeneous QCQPs and SDR

• Consider a general inhomogeneous QCQP

min
x∈Rn

xTCx+ 2cTx

s.t. xTAix+ 2aT
i x Di bi, i = 1, . . . ,m.

• An inhomogeneous QCQP can be reformulated as a homogenous QCQP

min
x∈Rn,t∈R

[
xT t

]
[
C c

cT 0

] [
x

t

]

s.t. t2 = 1,

[
xT t

]
[
Ai ai

aT
i 0

] [
x

t

]

Di bi, i = 1, . . . ,m

and then handled by SDR.
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An Alternative Way to Derive SDR for Inhomogeneous QCQPs

• Recap of inhomogeneous QCQP:

min
x∈Rn

xTCx+ 2cTx

s.t. xTAix+ 2aT
i x Di bi, i = 1, . . . ,m.

• By letting X = xxT , and then by replacing it with

X � xxT ,

we can derive an SDR

min
X∈Sn,x∈Rn

Tr(CX) + 2cTx

s.t. Tr(AiX) + 2aT
i x Di bi, i = 1, . . . ,m,

X � xxT .

• This inhomogeneous SDR is equivalent to the SDR from the homogenized QCQP

formulation (last page), by Schur complement X � xxT ⇐⇒
[
X x

xT 1

]

� 0.
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SDR MIMO Detection for QPSK Constellations

• Let N = 2NC, M = 2MC,

y =

[
Re{yC}
Im{yC}

]

, s =

[
Re{sC}
Im{sC}

]

, v =

[
Re{vC}
Im{vC}

]

,H =

[
Re{HC} −Im{HC}
Im{HC} Re{HC}

]

.

The complex-valued model yC = HCsC + vC can be turned to a real one

y = Hs+ v.

where s ∈ {±1}N for QPSK constellations.

• ML detection problem:

min
s∈RN

‖y −Hs‖2

s.t. s2i = 1, i = 1, . . . , N.

• SDR:
min

S∈SN ,s∈RN
Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. Sii = 1, i = 1, . . . , N,

S � ssT .
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Bit error rate performance under (MC, NC) = (10, 10), QPSK constellations. The SNR is

defined as
E{‖HCsC‖2}

E{‖vC‖2}
. ‘ZF’— zero forcing; ‘MMSE-DF’— min. mean square error with decision

feedback; ‘LRA’— lattice reduction aided; the Schnorr-Euchner sphere decoder is used.

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 80



0 3 6 9 12 15 18 21 24

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

 

 

ZF
MMSE−DF
LRA−ZF−DF
LRA−MMSE−DF
SDR, with randomization
Sphere decoding
performance lower bound

B
it
E
rr
or

P
ro
b
ab
ili
ty
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to run sphere decoding in this example.
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Computational Efficiency of SDR MIMO Detection

• The bulk of complexity lies in solving the SDP.

• A common, arguably dominant, way to solve SDPs is to use the interior point
methods (IPMs)— their solution precision is good, & their complexities are
provably polynomial-time in the problem size.

• For the SDP in QPSK SDR MIMO detection, an IPM can output a solution
with a worst-case complexity of

O((N + 1)3.5 log(ǫ−1)) ≃ O(N3.5),

where ǫ > 0 is the desired solution accuracy.

• A few practical hints:

– You don’t need a very small ǫ in MIMO detection, since you will round the
solution anyway.

– While a general purpose software, such as CVX, can be used to solve the
SDP conveniently, you’d better off write your own IPM for maximizing the
computational efficiency.

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 84



Interior-Point Algorithm for SDR MIMO Detection
The SDR problem in homogenous form:

min
X∈Sn

Tr(CX)

s.t. X � 0, Xii = 1, i = 1, . . . , n,

where C =

[

HTH −HTy

−yTH ‖y‖2

]

, X =

[

S s

sT 1

]

. By exploiting its simple equality constraint

structure, a specialized (and fast) IPM can be derived [Helmberg-et al.’96].

given ǫ > 0, and strictly feasible X, y, and Z.

repeat

1. update the barrier parameter µ := tr(ZX)/2n.
2. compute

∆y := [(Z−1 ◦ X)]−1(µdiag(Z−1) − 1),

∆Z := Diag(∆y)

∆X := µZ−1 − X − Z
−1∆ZX, ∆X := (∆X + ∆X

T )/2

3. find step-sizes αp ∈ (0, 1] and αd ∈ (0, 1] such that X+αp∆X ≻ 0 and Z+αd∆Z ≻ 0.

4. X := X + αp∆X, y := y + αd∆y, and Z := Z + αd∆Z.

until tr(ZX) ≤ ǫ.
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Cheap SDR by Row-by-Row Coordinate Descent

• While IPMs have good solution fidelity, they are generally not low complexity
options (check out the IPM pseudo code last page).

• Low complexity SDR implementation has received much interest.

• A possible alternative is row-by-row (RBR) coordinate descent [Wen-Goldfarb-
Ma-Scheinberg’09], [Wai-Ma-So’11].

• Ready-to-use codes available at http://www.ee.cuhk.edu.hk/~wkma/mimo/.

• To describe RBR, consider a barrier SDR problem

min
X∈Sn

Tr(CX)− σ log det(X)

s.t. Xii = 1, i = 1, . . . , n,
(B-SDR)

where σ > 0 is the barrier parameter.

• In (B-SDR), the log barrier function is used to enforce X � 0 (more precisely,
X ≻ 0), thereby avoiding to deal with the constraint X � 0 explicitly.
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• Let f(X) = Tr(CX) − σ log det(X), xi be the ith row of X, & X−i be the
collection of all elements of X except for xi.

• Idea of RBR: do a block coordinate descent on (B-SDR):

given a starting point X̂;
repeat
for i = 1, . . . , n
x̂i := arg min

xi, Xii=1
f(xi, X̂−i);

end;
until a stopping criterion is satisfied.

• The iterates are known to converge to the optimal solution of (B-SDR).

• Each per-row update is simple; e.g., the 1st row update can be equiv. written as

min
ξ1∈Rn−1

2cT1 ξ1 − σ log(1− ξT1 X̂
†

2:n,2:nξ1), (§)

where ξ1 = [x1]2:n, c1 = C1,2:n. The soln. to (§) is ξ⋆1 = κX̂2:n,2:nc1 for some
κ, a simple closed form (matrix multiplication, no inverse)!
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≤ δ, where f (k) is the objective value at iteration k.
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Complexity of RBR. A tenfold runtime saving relative to IPM is observed.
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Other Relaxations for QPSK ML MIMO Detection

• Generally speaking, relaxation methods work by relaxing the original problem to
a tractable problem.

• In that regard, relaxations other than SDR can be considered.

• Unconstrained relaxation (UR):

min
s∈RN

‖y −Hs‖2.

The result is ZF.

• On-Sphere Relaxation (OSR):

min
‖s‖2=N

‖y −Hs‖2.

The solution is ŝOSR = (HTH + γI)−1HTy for some γ; has an MMSE flavor.

• Box Relaxation (BR):
min

s2i≤1, i=1,...,N
‖y −Hs‖2.
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Comparison of the Various Relaxations

• In order to compare, let

f⋆
ML = min

s∈{±1}N
‖y −Hs‖2,

f⋆
SDR = min

S�ssT , Sii=1 ∀i
Tr(HTHS)− 2sTHTy + ‖y‖2,

f⋆
BR = min

s2i≤1, i=1,...,N
‖y −Hs‖2,

f⋆
OSR = min

‖s‖2=N
‖y −Hs‖2, f⋆

UR = min
s∈RN

‖y −Hs‖2.

• It is shown that [Ma-Davidson-Wong-Luo-Ching’02], [Poljak-Rendl-
Wolkowicz’95]

max{f⋆
UR, f

⋆
OSR, f

⋆
BR} ≤ f⋆

SDR ≤ f⋆
ML.

• The result means that SDR provides a relaxation no worse than the other three
methods. Or, the other methods may be seen as further relaxations of SDR.
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Regularization in LS

• Consider the least squares (LS) problem (for generic applications):

min
s∈RN

‖y −Hs‖2.

• Sometimes, in order to make the problem better conditioned, we may turn to a
regularized LS:

min
s∈RN

‖y −Hs‖2 + sTTs,

for some regularizer T ∈ SN (common choice: T = ρI, ρ > 0).

• SDR can be interpreted as a regularized LS.
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A Regularized LS Perspective on SDR

• Consider a Lagrangian dual of ML, as an approx.:

f⋆
ML ≥ g⋆ML = max

λ∈RN
min
s∈RN

‖y −Hs‖2 +
N∑

i=1

λi(s
2
i − 1)

= max
λ∈RN

−λT
1+ min

s∈RN
‖y −Hs‖2 + sTD(λ)s

︸ ︷︷ ︸
regularized LS

, (D)

where g⋆ML is the dual optimal value, D(·) is a diagonal operator.

• (D) intends to find a ‘best’ regularization in a {±1} LS context.

• SDR is equivalent to (D):
f⋆
SDR = g⋆ML.

Also, the dual of SDR is (D) (the trick: strong duality of convex problems).

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 93



• Recap of SDR in dual form

f⋆
SDR = max

λ∈RN
− λT

1+ min
s∈RN

‖y −Hs‖2 + sTD(λ)s.

• Consider OSR and BR. By strong Lagrangian duality, they can be expressed as

f⋆
OSR = max

λ=γ1, γ∈R
− λT

1+ min
s∈RN

‖y −Hs‖2 + sTD(λ)s,

f⋆
BR = max

λ�0

− λT
1+ min

s∈RN
‖y −Hs‖2 + sTD(λ)s.

• Apart from showing a regularized LS interpretation of OSR and BR, the above
eqs. reveal that the feasible set of λ in SDR subsumes that in OSR and BR.

• Hence, we can conclude the previous result that

f⋆
SDR ≥ f⋆

OSR, f⋆
SDR ≥ f⋆

BR.
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SDR MIMO Detection for MPSK Constellations

• The ML problem in the MPSK case:

min
sC∈CNC

‖yC −HCsC‖2

s.t. sC,i ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, i = 1, . . . , NC.

• Intuition: relax the constellations constraints to |sC,i|2 = 1, & then apply SDR.

• Following this intuition, we can formulate a complex-valued SDR [Ma-Ding-
Ching’04]:

min
SC∈HNC , sC∈CNC

Tr(HC
HHCSC)− 2Re{sCHHC

HyC}+ ‖yC‖2

s.t. [SC]ii = 1, i = 1, . . . , NC,

SC � sCsC
H.
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Symbol error rate performance under (MC, NC) = (20, 20), 8-PSK constellations. Note that

LRA methods are not applicable to MPSK constellations.
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SDR MIMO Detection for Higher-Order QAM

• Assume 16-QAM constellations, for ease of illustration.

• The ML problem (under the equivalent real-valued model):

min
s∈{±1,±3}N

‖y −Hs‖2.

• A number of attempts have been made for SDR of 16-QAM ML
detection [Wiesel-Eldar-Shamai’05], [Sidiropoulos-Luo’06], [Yang-Zhao-
Zhou-Wu’07], [Mobasher-Taherzah-Sotirov-Khandani’07], [Mao-Wang-
Wang’07].

• We consider

– polynomial inspired SDR (PI-SDR) [Wiesel-Eldar-Shamai’05];
– bound constrained SDR (BC-SDR) [Sidiropoulos-Luo’06];
– virtually antipodal SDR (VA-SDR) [Mao-Wang-Wang’07].
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Bound Constrained SDR (BC-SDR) [Sidiropoulos-Luo’06]:

• The 16-QAM ML problem is equivalent to

min
S∈SN ,s∈RN

Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. S = ssT ,
Sii ∈ {1, 9}, i = 1, . . . , N. (⇔ s2i ∈ {1, 9})

• Relaxing S = ssT to S � ssT is not enough to yield a convex relaxation.

• BC-SDR also relaxes {1, 9} to [1, 9], leading to

min
S∈SN ,s∈RN

Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. S � ssT ,
1 ≤ Sii ≤ 9, i = 1, . . . , N.

(BC-SDR)

• BC-SDR is simple to implement, and a specialized IPM is available [Ma-Su-
Jaldén-Chi’08].
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Polynomial Inspired SDR (PI-SDR) [Wiesel-Eldar-Shamai’05]:

• PI-SDR uses the fact that

u ∈ {1, 9} ⇐⇒ (u− 1)(u− 9) = 0 ⇐⇒ u2 − 10u+ 9 = 0

to reformulate the ML problem as

min
S,s,U ,u

Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. S = ssT , U = uuT ,
d(S) = u, d(U)− 10u+ 91 = 0. (⇔ u2

i − 10ui + 9 = 0, ∀i)

where d : RN×N → RN is the diagonal operator.

• PI-SDR is the SDR of the polynomial ML formulation:

min Tr(HTHS)− 2sTHTy + ‖y‖2
s.t. S � ssT , U � uuT ,

d(S) = u, d(U)− 10u+ 91 = 0.
(PI-SDR)
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Virtually Antipodal SDR (VA-SDR) [Mao-Wang-Wang’07]:

• VA-SDR uses the fact that

s ∈ {±1,±3} ⇐⇒ s = b1 + 2b2, b1, b2 ∈ {±1}.

to rewrite the ML problem in a virtually antipodal form

min
b1,b2∈{±1}N

‖y −H(b1 + 2b2)‖2 = min
b∈{±1}2N

‖y −HWb‖2,

where W = [ I 2I ], b = [ bT1 bT2 ]T .

• By applying the same SDR as in QPSK constellations, VA-SDR is obtained:

min Tr(W THTHWB)− 2bTW THTy + ‖y‖2
s.t. B � bbT , Bii = 1, i = 1, . . . , 2N.

(VA-SDR)
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• Rather unexpectedly, the three SDRs are equivalent [Ma-Su-Jaldén-Chang-
Chi’09].

• Consider a unified SDR expression

min
(S,s)∈F

Tr(HTHS)− 2sTHTy + ‖y‖2,

where F depends on the SDR employed:

FBC−SDR = { (S, s) | S � ss
T ,1 � d(S) � 91 },

FPI−SDR = { (S, s) | (U,u,S, s) ∈ WPI−SDR },
WPI−SDR = { (U,u,S, s) | U � uu

T ,S � ss
T , d(S) = u, d(U)− 10u+ 91 = 0 },

FVA−SDR = { (S, s) = (WBW
T ,Wb) | B � bb

T , d(B) = 1 }.

• It is shown by analysis that

FBC−SDR = FPI−SDR = FVA−SDR.

The same equivalence is also proven for 64-QAM PI-SDR, & for any 2q-QAM
VA-SDR.
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16-QAM constellations. The three performance plots coincide.
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Symbol error rate performance under (MC, NC) = (40, 40), 16-QAM constellations. Sphere

decoding is too expensive to run in this case.
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Some Results in Performance Analysis

• Assume QPSK or BPSK constellations. SDR has a high probability of giving a
rank-one solution, for high SNRs [Jaldén-Martin-Ottersten’03].

• Assume BPSK constellations, & i.i.d. complex Gaussian HC. SDR is proven to
achieve the full rx diversity [Jaldén-Ottersten’08].

• Approximation accuracies: [So’09], [So’10] showed that in both the MPSK and
4q-QAM scenarios, the SDR detector can produce a constant factor approximate
solution to the ML detection problem with exponentially high probability if the
SNR is sufficiently low. In other words, in the low SNR region, we have

‖y −Hŝ‖2 ≤ O(1) · ‖y −Hs⋆‖2,

with very high probability, where

– ŝ is the solution produced by SDR (with a suitable randomization procedure),
– s⋆ is the optimal ML solution.
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Part III.B: Sensor Network Localization
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Overview
The sensor network localization (SNL) problem is to determine the (x, y) coordinates
of the sensors, given distance information between sensors.

• In ad-hoc sensor networks, the
sensor locations may not be
known.

• A sensor may acquire its location
by equipping it with GPS, but this
may be too expensive.

• We may have several anchor
sensors that have self-localization
capability, though.

Anchors

Sensors

• Since sensors can communicate with each other, each sensor pair can work out
their distance (e.g., by measuring the time-of-arrival info., or by ping-pong).

• The inter-sensor distances, together with anchor locations, can be used to
estimate all the sensor locations in a joint fashion.
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• Let {x1, . . . ,xn}, xi ∈ R2, be the collection of all (unknown) sensor coordinates.

• Let {a1, . . . ,am}, ai ∈ R2, be the collection of all (known) anchor coordinates.

• The distance between sensor i and sensor j is

dij =
√

(xi,1 − xj,1)2 + (xi,2 − xj,2)2 = ‖xi − xj‖.

Likewise, the distance between sensor i and anchor j is

d̄ij = ‖xi − aj‖.

The obtained dij & d̄ij are assumed noiseless (extension for noisy cases available).

• The SNL problem here is that of finding x1, . . . ,xn such that

‖xi − xj‖2 = d2ij, (i, j) ∈ Ess,

‖xi − aj‖2 = d̄2ij, (i, j) ∈ Esa,

where Ess & Esa are the sensor-sensor & sensor-anchor edge sets, resp.
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Deriving an SDR of the SNL Problem: A First Attempt
• Let X = [ x1, . . . ,xn ] ∈ R2×n. The SNL problem can be formulated as

find X ∈ R2×n

s.t. xT
i xi − 2xT

i xj + xT
j xj = d2ij, (i, j) ∈ Ess,

xT
i xi − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa.

This follows since

‖xi − xj‖2 = (xi − xj)
T (xi − xj) = xT

i xi − 2xT
i xj + xT

j xj

and similarly for ‖xi − aj‖2.

• By letting Y = XTX ∈ Rn×n, we can also formulate the SNL problem as
follows:

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Y = XTX.

(SNL)

• It is known [Saxe’79] that finding a solution to (SNL) is NP-hard.
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• Observe that with X ∈ R2×n, the constraint Y = XTX is equivalent to

Y � 0, rank(Y ) ≤ 2.

• If we proceed as before and just drop the trouble-causing rank constraint, then
we get the following SDR:

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Y � 0.

• In this formulation, there is no connection between X and Y . In other words,
the information in the original constraint Y = XTX is totally lost. The solution
obtained could be quite awful.
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Deriving an SDR of the SNL Problem: Another Attempt

• To keep the connection between X and Y , instead of relaxing Y = XTX to
Y � 0, we relax it to

Y � XTX.

– This is an SDP constraint, since by the Schur complement,

Y � XTX ⇐⇒ Z =

[
I X

XT Y

]

� 0.

• Then, we have the following SDR of the SNL problem:

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Y � XTX.

(SNL-SDR)
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Theoretical Properties of the SDR

• Suppose that we have a solution (X⋆,Y ⋆) to (SNL-SDR). Under what conditions
will it be a solution to the original problem (SNL)?

• In [So-Ye’07], a complete characterization is obtained.

• [So-Ye’07] Suppose that the given SNL instance is connected. Then, the
following statements are equivalent:

– The solution (X⋆,Y ⋆) to (SNL-SDR) is feasible for (SNL) (in particular, we
have Y ⋆ = X⋆TX⋆).

– The max-rank solution to (SNL-SDR) has rank 2.
– The given SNL instance is uniquely localizable, i.e., it has a unique solution

in all dimensions.

• Since most polynomial-time interior-point algorithms for solving SDPs will return
a solution that has the highest rank, we can localize uniquely localizable instances
in polynomial time.

• The above result fits the theme of compressed sensing and low-rank optimization,
which are two currently very active research areas.
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Rank of SDR Solution and Dimension Reduction

• In [So-Ye’07] it was also shown that if the solution Y ⋆ to (SNL-SDR) has rank
d, then one can construct d-dimensional coordinates for the sensors so that the
distance constraints are satisfied.

• Question: While it is NP-hard to find a rank-2 solution Y ⋆ to (SNL-SDR), is it
possible to find a low rank solution (and hence achieve dimension reduction)?

• One heuristic is to “stretch apart” pairs of non-adjacent nodes. This will tend
to flatten the configuration of nodes.

• Mathematically, this corresponds to adding an objective function to (SNL):

max
x1,...,xn

∑

(i,j)∈Nss

‖xi − xj‖2

s.t. ‖xi − xj‖2 = d2ij, (i, j) ∈ Ess,
‖xi − aj‖2 = d̄2ij, (i, j) ∈ Esa,

(SNL-OBJ)

where Nss ⊂ {(i, j) : (i, j) 6∈ Ess} is a subset of the non-adjacent pairs.

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 114



• Again, we can apply SDR to (SNL-OBJ).

• Interestingly, the solution to the resulting SDR often has low rank.

• In [So-Ye’06], some theoretical justification is given to explain this phenomenon.
It is related to the so-called tensegrity theory in discrete geometry.

• If distortion on the distances is allowed, then one can achieve dimension reduction
using the SYZ theorem [So-Ye-Zhang’08] (see the procedure in Box 4).
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Speeding Up the Computation

• When the number of sensors/edges is large, solving (SNL-SDR) could take a
long time. The bottleneck comes not only from the large number of constraints,
but also the large ((n+ 2)× (n+ 2)) positive semidefinite (PSD) constraint

Z =

[
I X

XT Y

]

� 0.

• Complexity-reduced implementations, at the cost of some SNL performance,
have recently received attention in large-scale sensor network applications.
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Speeding Up the Computation: The Edge-Based SDR

• To circumvent the large PSD constraint, one approach is to first observe that
each edge (i, j) ∈ Ess is responsible for the following constraints in (SNL):

Yii − 2Yij + Yjj = d2ij,
Yii = xT

i xi, Yij = xT
i xj, Yjj = xT

j xj. (†)

• Now, we can treat the constraints in (†) as a group and relax them using our
previous technique, i.e.,

R4×4 ∋ Zij =





I xi xj

xT
i Yii Yij

xT
j Yij Yjj



 � 0.
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• This approach results in the following so-called edge-based SDR of the SNL
problem, which was presented in [Wang-Zheng-Ye-Boyd’08]:

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Zij =





I xi xj

xT
i Yii Yij

xT
j Yij Yjj



 � 0, (i, j) ∈ Ess.

(SNL-ESDR)

• Note that (SNL-ESDR) has |Ess| 4 × 4 PSD constraints, instead of one (n +
2) × (n + 2) PSD constraint in (SNL-SDR). The smaller dimension (i.e., 4) of
the PSD constraints in (SNL-ESDR) is computationally easier to handle, thus
allowing a speedup in computation.

• However, it should be noted that (SNL-SDR) is a tighter relaxation than (SNL-
ESDR). Indeed, each Zij is a principal submatrix of Z, and every principal
submatrix of a PSD matrix must also be PSD.
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Extensions of the Basic SDR

• So far we have only considered the noiseless version of the SNL problem.

• In general, the distance measurements {dij} and {d̄ij} could be corrupted. A
commonly used error model is

dij = dnomij + gij,
d̄ij = d̄nomij + ḡij,

where {dnomij } and {d̄nomij } are the nominal measurements, and {gij} (resp. {ḡij})
are i.i.d. Gaussian random variables with mean 0 and variance σ2

ij (resp. σ̄2
ij).

• In [Biswas-Liang-Wang-Ye’06], the following maximum-likelihood (ML) SNL
formulation is considered:

min
x1,...,xn

∑

(i,j)∈Ess

1

σ2
ij

(‖xi − xj‖ − dij)
2 +

∑

(i,j)∈Esa

1

σ̄2
ij

(
‖xi − aj‖ − d̄ij

)2
.

(ML-SNL)
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• As shown in [Biswas-Liang-Wang-Ye’06], SDR can be employed to tackle the
nonconvex problem (ML-SNL).

• The key lies in constructing suitable linearizations of the expressions

(‖xi − xj‖ − dij)
2

and
(
‖xi − aj‖ − d̄ij

)2
.

• Let us focus on the former. The strategy is to proceed “one level at a time”.
Let

ǫij = (‖xi − xj‖ − dij)
2
= ‖xi − xj‖2 − 2dij‖xi − xj‖+ d2ij. (†)

Upon defining
uij = ‖xi − xj‖, vij = ‖xi − xj‖2,

we see that (†) is equivalent to

vij − 2dijuij + d2ij = ǫij, vij = u2
ij, vij = Yii − 2Yij + Yjj, Y = XTX.
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• Now, we can relax vij = u2
ij to vij ≥ u2

ij, and Y = XTX to Y � XTX.
Using the Schur complement, these are equivalent to the SDP constraints

U ij =

[
1 uij

uij vij

]

� 0, Z =

[
I X

XT Y

]

� 0.

• Hence, we obtain the following SDR of (ML-SNL):

min
X,Y ,{U ij},{Ū ij}

∑

(i,j)∈Ess

1

σ2
ij

ǫij +
∑

(i,j)∈Esa

1

σ̄2
ij

ǭij

s.t. Yii − 2Yij + Yjj = v2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = v̄2ij, (i, j) ∈ Esa,

vij − 2dijuij + d2ij = ǫij, (i, j) ∈ Ess,
v̄ij − 2d̄ijūij + d̄2ij = ǭij, (i, j) ∈ Esa,
U ij � 0, (i, j) ∈ Ess; Ū ij � 0, (i, j) ∈ Esa; Z � 0.

(ML-SNL-SDR)

• Note that the solution to (ML-SNL-SDR) can be used as a starting iterate for a
gradient descent procedure, which can further improve the solution quality.
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— : gradient descent trajectory (50 iterations).

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 122



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Gradient descent ML-SNL with a random starting point. ◦: true sensor locations; ♦: anchor

locations; — : gradient descent trajectory (50 iterations).
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Extensions of the Basic SDR
• SDR can also be employed to handle ML-SNL formulations with uncertain anchor
locations, and/or with uncertain propagation speed [Lui-Ma-So-Chan’09] (the
latter happens in underground sensor networks).

• For uncertain anchor locations, one could adopt the following error model:

ai = anom
i + zi,

where anom
i ∈ R2 is the nominal location of anchor i, and zi ∈ R2 is a Gaussian

random vector with mean zero and covariance matrix Φi.

• Then, one has the following ML formulation (which is nonconvex):

min
x1,...,xn
a1,...,am

∑

(i,j)∈Ess

1

σ2
ij

(‖xi − xj‖ − dij)
2
+

∑

(i,j)∈Esa

1

σ̄2
ij

(
‖xi − aj‖ − d̄ij

)2

+
∑

i

(ai − anom
i )TΦ−1

i (ai − anom
i ).

• This can be handled using the previously introduced SDR techniques.

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 124



−50 −45 −40 −35 −30 −25 −20
−16

−14

−12

−10

−8

−6

−4

−2

0

2

σ
d
2 ( dBm2 )

M
ea

n 
sq

ua
re

 p
os

iti
on

 e
rr

or
 (

 d
B

m
2  )

 

 

standard SDP
proposed SDP
proposed ESDP
CRLB

Mean square position error performance versus noise power in the presence of anchor position
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Details available in [Lui-Ma-So-Chan’09].

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 125



Part III.C: Transmit Beamforming
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Overview

• Tx. beamforming (BF) has received much attention, with numerous formulations,
application scenarios, solution approaches, their combinations,...

• Our focus:

– A QCQP-SDR perspective on various tx. BF problems;

– robust solutions under imperfect CSIT.

• What we will not go through:

– alternative solution approaches:
∗ second-order cone program (SOCP) (for unicast BF with instant. CSIT only)
[Wiesel-Eldar-Shamai’06];

∗ uplink-downlink duality (for unicast BF only) [Schubert-Boche’04];

– alternative design formulations:
∗ max-min-fairness (can be handled by SDR);
∗ user admission;
∗ proportional fairness, sum rate max., ...
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Multi-Group Multicast Beamforming

• A natural generalization of unicast and multicast BF.

• Scenario: multiuser MISO downlink with M groups of users, & with each
group receiving the same info. [Karipidis-Sidiropoulos-Luo’08]

|{z}

group 1

group 2

group 3

|{z}

|{z}
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• Transmit signal:

x(t) =
M∑

m=1

wmsm(t)

where sm(t) ∈ C is the data stream for group m, & wm ∈ CNt its beamvector.

• Received signal of user k in the mth group:

ym,k(t) = hH
m,kx(t) + vm,k(t)

= hH
m,kwmsm(t) +

∑

l 6=m

hH
m,kwlsl(t)

︸ ︷︷ ︸
inter-group interference

+vm,k(t),

where k = 1, . . . , Km, & Km is the number of users in the mth group.

• SINR:

SINRm,k =
wH

mRm,kwm
∑

l 6=mwH
l Rm,kwl + σ2

m,k

where Rm,k = hm,kh
H
m,k for instant. CSIT, & Rm,k = E{hm,kh

H
m,k} for stat.

CSIT.
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• Problem: a QoS-assured, total power minimizing, design

min
w1,...,wM∈CNt

M∑

m=1

‖wm‖2

s.t. SINRm,k =
wH

mRm,kwm
∑

l 6=mwH
l Rm,kwl + σ2

m,k

≥ γm,k,
k = 1, . . . ,Km,
m = 1, . . . ,M,

where γm,k’s are prescribed SINR requirements.

• A separable QCQP with M variables, w1, . . . ,wM , and
∑M

m=1Km constraints.

• By the SBP rank result, the rank-one optimality of SDR is assured when:

– K1 ≤ 3, Km = 1 ∀m 6= 1 (one group serving ≤ 3 users, the others 1 user);
– K1 ≤ 2, K2 ≤ 2, Km = 1 ∀m 6= 1, 2 (two groups serving ≤ 2 users, the

others 1 user).

• requires a more sophisticated randomization procedure [Karipidis-Sidiropoulos-
Luo’08].
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Multi-Cell Coordinated Beamforming

• Motivation: provide better interference management by coordinating the
transmissions of base stations at different cells.

• Scenario: Unicast transmit beamforming in a multi-cell scale [Dahrouj-Yu’10],
[Bengtsson-Ottersten’01]
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• Transmit signal of ith cell:

xi(t) =

Ki∑

j=1

wi,jsi,j(t), i = 1, . . . , N

where si,j(t) / wi,j is the tx. stream/ beamvector for user j in ith cell, resp.;
Ki is the no. of users in ith cell; N is the no. of cells.

• Received signal of user j in the ith cell:

yi,j(t) = hH
i,i,jxi(t) +

∑

m 6=i

hH
m,i,jxm(t) + vi,j(t), j = 1, . . . ,Ki

where hm,i,j is the channel from mth cell to user j in the ith cell.

• Define CSIT Rm,i,j in the same way as before. SINR:

SINRi,j =
wH

i,jRi,i,jwi,j
∑

l 6=j

wH
i,lRi,i,jwi,l

︸ ︷︷ ︸
intra-cell interference

+
∑

m 6=i

∑

n

wH
m,nRm,i,jwm,n

︸ ︷︷ ︸
inter-cell interference

+σ2
i,j
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• Design problem:

min
{wi,j}

∑

i,j

‖wi,j‖2

s.t.
wH

i,jRi,i,jwi,j
∑

l 6=j w
H
i,lRi,i,jwi,l +

∑

m 6=i,nw
H
m,nRm,i,jwm,n + σ2

i,j

≥ γi,j,

j = 1, . . . , Ki, i = 1, . . . , N

• A QCQP with
∑N

i=1Ki variables &
∑N

i=1Ki constraints (despite its complicated
appearance).

• SDR solves the multi-cell unicast problem optimally, by the SBP rank result.

• Practical issue: distributed optimization algorithms.
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Cognitive Radio (CR) Beamforming

• Goal: access the channel owned by primary users (PUs) through spectrum
sharing.

• Idea: the CR system avoids excessive interference to the PUs through tx. opt.

• Scenario: MISO downlink with the CR (or secondary) system, either unicast
or multicast; K secondary users (SUs); L single-antenna PUs

Primary 

Rx

Secondary 

Rx

Primary Tx

Secondary 

Tx

• Assume known CSIT from the secondary transmitter to the PUs.
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• Consider the multicast case.

– tx. and rx. model for SUs: same as the previous multicast model.
– Interference to the lth PU:

|gH
l w|2

where gl is the channel from the secondary transmitter to the lth PU.

• Design problem [Phan-Vorobyov-Sidiropoulos-Tellambura’09]:

min
w

‖w‖2

s.t. SNRSU,i = wHRkw/σ2
k ≥ γk, k = 1, . . . , K,

wHGlw ≤ δl, l = 1, . . . , L (interference temperature (IT) constraints)

where Gl is the CSIT of lth PU (defined in the same way as Rk), δl is the
tolerable interference level to l PU, & γk are SUs’ SNR requirements.

• By the SBP rank result, SDR is optimal when K ≤ 2, L = 1 (≤ 2 SUs, 1 PU).
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• CR BF design for the unicast case (see, e.g., [Zhang-Liang-Cui’10]):

min
w1,...,wK

K∑

k=1

‖wk‖2

s.t. SINRSU,i =
wH

k Rkwk
∑

l 6=kw
H
l Rkwl + σ2

k

≥ γk, k = 1, . . . , K,

∑K
k=1w

H
k Glwk ≤ δl, l = 1, . . . , L (IT constraints)

• A separable QCQP with K variables and K + L constraints.

• By the SBP rank result, SDR solves the problem if L ≤ 2.

• Remark: For instant. CSIT with SUs, SDR can be shown to be optimal for any
L. Or it can be reformulated, and then solved, by SOCP.
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One-Way Relay Network Beamforming

• Scenario: one-way cooperative communication by a network of N single-antenna
amplify-forward (AF) relays, K tx-rx pairs [Fazeli-Dehkordy-Shahbazpanahi-
Gazor’09].

Phase I Phase II

f1;1

f1;2

f1;N

g1;1

g1;2

g1;N

Source to Relay Relay to Destination 

fK;1

fK;2

fK;N

gK;1

gK;2

gK;N

Tx 1

Tx Rx 

Rx 1

1

2

N

• Goal: Design the AF weights so that the SINR requirements are met, and the
total relay tx. power is minimized.
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• System model:

– rx. signals for the source-to-relay link:

r(t) =
K∑

i=1

f isi(t) + n(t),

where r(t) = [ r1(t), . . . , rN(t) ], ri(t) being the rx. signal of relay i;
si(t) is the data stream from source i to destination i;
f i ∈ CN the channel from source i to the relays;
n(t) is noise with covariance Σn = Diag(σ2

n,1, . . . , σ
2
n,N).

– AF process:
x(t) = Wr(t),

where W = Diag(w1, . . . , wN), wi is the AF weight at relay i.

– rx. signals for the relay-to-destination link:

yi(t) = gH
i x(t) + vi(t), i = 1, . . . , K,

where gi is the channel from the relays to destination i; vi(t) is noise with
variance σ2

v,i.
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• Assume instant. CSIT (for ease of illustration).

SINRi =
|gH

i Wf i|2
∑

k 6=i |gH
i Wfk|2

︸ ︷︷ ︸
interference

+ gH
i WΣnW

Hgi
︸ ︷︷ ︸

noise amplification due to AF

+σ2
v,i

, i = 1, . . . ,K.

• Let w = [ w1, . . . , wN ]T ∈ CN . The design problem:

min
w

E{‖x(t)‖2} = wHCw

s.t. SINRi =
wHAiw

wHBiw + σ2
v,i

≥ γk, k = 1, . . . , K,

where Ai = (f∗
i ⊙ gi)(f

∗
i ⊙ gi)

H, Bi =
∑

k 6=i(f
∗
k ⊙ gi)(f

∗
k ⊙ gi)

H +

Diag(|gi,1|2σ2
n,1, . . . , |gi,N |2σ2

n,N), C = Diag(‖f1‖2+σ2
n,1, . . . , ‖fN‖2+σ2

n,N).

• The problem is a QCQP with K constraints; SDR is optimal for K ≤ 3.
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One-Way MIMO Relay Beamforming

• Scenario: one-way relaying by an MIMO AF relay, K tx-rx pairs [Chalise-
Vandendorpe’09].

Phase I Phase II

Source to Relay Relay to Destination 

Tx 1

Tx Rx 

Rx 1

Relay

f 1

fK

g
1

gK

• Everything is the same as that in the last relay example, except that a matrix
AF process is considered:

x(t) = Wr(t),

where W ∈ CN×N is a general N ×N matrix (instead of being diagonal).
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• Let w = vec(W ) ∈ CN2
.

• The design problem (after some careful derivations):

min
w

E{‖x(t)‖2} = wHCw

s.t. SINRi =
wHAiw

wHBiw + σ2
v,i

≥ γk, k = 1, . . . , K,

whereAi = (f∗
i⊗gi)(f

∗
i⊗gi)

H, Bi =
∑

k 6=i(f
∗
k⊗gi)(f

∗
k⊗gi)

H+Σ
T
n⊗(gig

H
i ),

& C = (
∑K

i=1 f
∗
if

T
i +Σ

T
n)⊗ I.

• Again, optimality of SDR is assured for K ≤ 3.
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Two-Way Relay Beamforming

• Scenario: two-way communication between two users, using an MIMO AF
relay [Zhang-Liang-Chai-Cui’09]

Relay
User 1 User 2

Relay
User 1 User 2

h1

h1

h2

h2

– Phase I: two users transmit

r(t) = h1s1(t)+h2s2(t)+n(t).

– Phase II: matrix AF relaying

x(t) = Wr(t).

• In addition, the users can self cancel their previously tx. data.

y1(t) = hH
1 x(t) + v1(t) = hH

1 Wh1s1(t)
︸ ︷︷ ︸
self interference,

cancelled

+hH
1 Wh2s2(t) + hH

1 Wn(t)
︸ ︷︷ ︸
noise amp.

+v1(t),

y2(t) = hH
2 x(t) + v2(t) = hH

2 Wh1s1(t) + hH
2 Wh2s2(t)

︸ ︷︷ ︸
self interference,

cancelled

+hH
1 Wn(t)

︸ ︷︷ ︸
noise amp.

+v2(t).
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• The design problem

min
W

E{‖x(t)‖2}

s.t. SNR1 =
|hH

1 Wh2|2
hH
1 WΣnWHh1 + σ2

v,1

≥ γ1,

SNR1 =
|hH

2 Wh1|2
hH
2 WΣnWHh2 + σ2

v,2

≥ γ2

can be converted to a 2-constraints QCQP, by applying w = vec(W ) ∈ CN2

(the same way as in the last example).

• SDR is optimal for two-way relaying.
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Physical-Layer Secrecy

• A topic concerned with physical-layer techniques for delivering secure
communication in the presence of eavesdroppers.

• A potentially powerful alternative, or complement, to the network-layer-based
cryptographic encryption techniques.

• The idea has been there around the 70’s in info. theory; e.g., [Wyner’75].

• Receive growing attention recently, usually with MIMO.

Eavesdropper 

(Eve) 

Legitimate receiver 

(Bob) 

Transmitter 

(Alice) 

Transmit beam for 
legitimate receivers
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A Simple Illustrating Example of Physical-Layer Secrecy

• We will call the transmitter Alice, the intended receiver Bob, & the eavesdroppers
Eves, resp.

• Consider a one-Bob, one-Eve MISO scenario. Signal model:

yBob(t) = hHx(t) + n(t), yEve(t) = gHx(t) + v(t),

where x(t) = ws(t) is the tx signal (BF, as before); h / g is the Alice-to-Bob /
Alice-to-Eve channel, resp.; n(t) / v(t) is noise at Bob / Eve, resp. Also, define

SNRBob =
|hHw|2

σ2
n

, SNREve =
|gHw|2

σ2
v

.

• A secrecy rate maximization problem:

C = max
w∈CNt

log(1 + SNRBob)− log(1 + SNREve)

s.t. ‖w‖2 ≤ Pmax.

This secrecy rate is achievable— there exist codes such that Bob can reliably
receive a message at C bps/Hz, while Eve can retrieve almost nothing.
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Artificial Noise (AN) for Physical-Layer Secrecy

• An intuitively insightful idea—jamming Eves by transmitting artificially generated
noise [Negi-Goel’05].

• Tx model:

x(t) = ws(t) + z(t),

z(t) ∼ CN (0,Σ),

where z(t) is AN, and Σ

its covariance.
Eavesdropper (Eve)

Legitimate receiver (Bob) 

Transmitter (Alice) 

Transmit beam for 
legitimate receiver

Artificial noise

• A popular design is to make AN (almost) isotropic:

w =
√

αPmaxh/‖h‖, Σ = (1− α)Pmax(I − hhH/‖h‖2),

where Pmax is the total tx power, 0 < α ≤ 1 is a power allocation factor.
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QoS-based BF Approach to MISO Channel Secrecy

• Scenario: One Bob, multiple Eves, all MISO [Liao-Chang-Ma-Chi’11].

Eavesdropper (Eve) 

Legitimate receiver (Bob)

Transmitter (Alice) 

Transmit beam for Bob

Artificial noise

• AN can be spatially selective, jamming Eves in a more spatially focused fashion.

• The beamvector and AN covariance are jointly optimized.
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• tx-rx model:

x(t) = ws(t) + z(t), z(t) ∼ NC(0,Σ),

yBob(t) = hHx(t) + n(t) = hHws(t) + hHz(t)
︸ ︷︷ ︸

AN interference

+n(t),

yEve,i(t) = gH
i x(t) + vi(t) = gH

i ws(t) + gH
i z(t)

︸ ︷︷ ︸
AN interference

+vi(t), i = 1, . . . , L.

• SINRs:

SINRBob =
|hHw|2

Tr(ΣhhH) + σ2
n

, SINREve,i =
|gH

i w|2
Tr(Σgig

H
i ) + σ2

v,i

, i = 1, . . . , L.

• Design: given a specification (γ, β), solve

min
w,Σ�0

‖w‖2 + Tr(Σ)

s.t. SINRBob ≥ γ, SINREve,i ≤ β, i = 1, . . . , L.

The design achieves a secrecy rate of at least log(1 + γ) − log(1 + β) bps/Hz,
with min. power.
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Aspects with solving the QoS-based secure tx. BF design:

min
w,Σ�0

‖w‖2 +Tr(Σ)

s.t. SINRBob =
|hHw|2

Tr(ΣhhH) + σ2
n

≥ γ,

SINREve,i =
|gH

i w|2
Tr(Σgig

H
i ) + σ2

v,i

≤ β, i = 1, . . . , L.

• cannot be solved by the SOCP approach, except when AN is disabled.

• can be handled by SDR, by replacing W = wwH with W � 0.

• By the now familiarized SBP rank result, rank-one optimality of SDR (w.r.t. W
only!) is assured when L ≤ 2.

• BUT, by examining the KKT condition of this problem, a better result is found—
SDR has a rank-one solution with W for any L [Liao-Chang-Ma-Chi’11].

• For stat. CSIT, a similar, but slightly weaker result is established [Liao-Chang-
Ma-Chi’11].
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MISO Secrecy Rate Maximization
Consider the secrecy rate maximization design:

max
w,Σ�0

log(1 + SINRBob)− max
i=1,...,L

log(1 + SINREve,i)

s.t. ‖w‖2 + Tr(Σ) ≤ Pmax.
(†)

• Problem (†) is nonconvex, even after SDR.

• Despite that, insights from SDR provide vital clues. Recent results [Li-Ma’11],
[Li-Ma’11-B]:

– (†) can be solved by a one-variable parameterized SDP; rank-one solution
w.r.t. W is proven to exist;

– without AN, (†) can be solved by an SDP; rank-one solution w.r.t. W is
proven to exist uniquely;

– the above two results can be generalized to handle imperfect CSIT in a
worst-case sense (also [Li-Ma-So’11] for outage-based robust designs);

– multi-antenna or colluding Eves can be handled (also [Liao-Chang-Ma-
Chi’11]).
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Frontier Problem: Outage-Based Unicast Transmit

Beamforming

Recall the unicast transmit downlink beamforming problem, where we have multiuser
MISO downlink, with each user receiving an independent data stream.

⋮

Basestation

User 1

User 2

• Assume that instantaneous CSIT is perfectly
known, Ri = hih

H
i , i = 1, . . . ,K.

• Previously, we have formulated the following
QoS-assured design problem:

min
w1,...,wK∈CN

∑K
i=1 ‖wi‖2

s.t.
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

≥ γi,

i = 1, . . . ,K.

• As seen before, this can be handled by SDR.
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Frontier Problem: Outage-Based Unicast Transmit

Beamforming

CSIT is generally imperfectly known in practice.

⋮

Basestation

Presumed
User 1

Presumed 
User 2

Actual
User 2

Actual
User 1

• Suppose that the presumed CSIT is
inaccurate.

• If we directly substitute the presumed CSIT
into the standard QoS-assured design

min
w1,...,wK∈CN

∑K
i=1 ‖wi‖2

s.t.
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

≥ γi,

i = 1, . . . , K,

and run it, then the resultant design may
have severe SINR outage.
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Non−robust

Histogram of the actual SINR satisfaction probabilities of the non-robust QoS-assured design.

Nt = K = 3; i.i.d. complex Gaussian CSI errors with zero mean and variance 0.002; γ = 11dB.

The design has more than 50% outage most of the time.
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Outage-Based Unicast Transmit Beamforming: Formulation

• Let us assume that hi ∼ CN (h̄i, σ
2
eI), where h̄i is the presumed channel, and

σ2
e is the CSI uncertainty variance.

• A meaningful, but very difficult, design problem:

min
w1,...,wK∈CN

∑K
i=1 ‖wi‖2

s.t. Probhi∼CN (h̄i,σ2
eI)

{

wH
i hih

H
i wi

∑

l 6=iw
H
l hih

H
i wl + σ2

i

≥ γi

}

≥ 1− ρi,

i = 1, . . . ,K,

where the ρi’s are the maximum tolerable outage probabilities.
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• The outage-based SINR constraints

Probhi∼CN (h̄i,σ2
eI)

{

wH
i hih

H
i wi

∑

l 6=iw
H
l hih

H
i wl + σ2

i

≥ γi

}

≥ 1− ρi

can be rewritten as

Probei∼CN (0,σ2
eI)






(h̄i + ei)

H




1

γi
wiw

H
i −

∑

l 6=i

wlw
H
l



 (h̄i + ei) ≥ σ2
i






≥ 1−ρi.

• Challenges:

– The probability on the LHS has no simple closed form expression.
– The quadratic function

(h̄i + ei)
H




1

γi
wiw

H
i −

∑

l 6=i

wlw
H
l



 (h̄i + ei)

is indefinite (and hence nonconvex) in the design variables w1, . . . ,wK.
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Tackling the Nonconvexity: SDR

• Let us first do the thing we are good at — SDR.

• By SDR, we have

Probei∼CN (0,σ2
eI)






(h̄i + ei)

H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei) ≥ σ2
i






≥ 1− ρi.

• Now, the function

(h̄i + ei)
H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei)

is linear in the variables W 1, . . . ,W k, which is good.

• However, the probability still does not admit a simple closed form expression.
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Processing the Probabilistic Constraint: Monte Carlo?

• In principle, we can handle the SDRed probabilistic constraint by Monte Carlo
methods.

• Specifically, let e1i , . . . ,e
L
i be i.i.d. according to CN (0, σ2

eI). Here, L ≥ 1 is
some parameter. Consider the SDP constraints

(h̄i + eℓi)
H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + eℓi) ≥ σ2
i , ℓ = 1, . . . , L,

W 1, . . . ,WK � 0.

(†)

• It can be shown [Calafiore-Campi’05] that for sufficiently large L (which
depends on the outage tolerance ρi), any solution to (†) will satisfy the
corresponding SDRed probabilistic constraint with high confidence.

• However, this method is extremely time consuming in practice.
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Processing the Probabilistic Constraint: Convex Restriction

• Let

Vi({W j}) = Probei∼CN (0,σ2
eI)






(h̄i + ei)

H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei) < σ2
i







be the violation probability. Recall that we want

Vi({W j}) ≤ ρi.

• It is not hard to see that Vi can be expressed as

Vi({W j}) = Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}

for some Q, r and s that depend on W 1, . . . ,WK and the index i. (Here and
in the sequel, we drop the index i for notational simplicity.)
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• To process the violation probability Vi, another idea is to find an efficiently
computable convex function f(Q, r, s, t), where t is an additional decision
vector, such that

Vi({W j}) = Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}
≤ f(Q, r, s, t).

• Then, by construction, the convex constraint

f(Q, r, s, t) ≤ ρ (CR-PC)

serves as a sufficient condition for the probabilistic constraint

Vi({W j}) ≤ ρ (PC)

to hold. We call (CR-PC) a convex restriction of (PC).
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Finding the Convex Restriction

• Can we find such a convex function? Does it even exist? The answer is: Yes!
(And there are many such functions.)

• For instance, we can employ a Bernstein-type inequality [Bechar2009], which
states that

Probe∼CN (0,I){eHQe+ 2Re{eHr}+ s < 0} ≤ e−T−1(s),

where T (η) = Tr(Q)−√
2η

√

‖Q‖2F + ‖r‖2 − ηmax{λmax(−Q), 0}.

• Is the constraint
e−T−1(s) ≤ ρ

convex? Yes! It is equivalent to

Tr(Q)−
√

−2 ln(ρ) · t1 + ln(ρ) · t2 + s ≥ 0,
√

‖Q‖2F + 2‖r‖2 ≤ t1,

t2I +Q � 0,

t2 ≥ 0.
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Putting Things Together: The Relaxation-Restriction

Approach

• Applying the Bernstein-type inequality to the SDR’ed SINR constraints (with
some additional work), a convex relaxation-restriction approximation is developed
[Wang-Chang-Ma-So-Chi’11].

• A mysterious finding in simulations: rank-one SDR solution is obtained in
almost all the problem instances!
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SDR+Bernstein

Histogram of the actual SINR satisfaction probabilities of the proposed SDR+Bernstein method.

Nt = K = 3; i.i.d. complex Gaussian CSI errors with zero mean and variance 0.002; γ = 11dB;

ρ = 0.1 (90% SINR satisfaction).
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SDR+Bernstein
Probabilistic SOCP

Feasibility performance of the proposed method and the probabilistic SOCP method [Shenouda-

Davidson’08]. Nt = K = 3; σ2
e = 0.002; γ = 11dB; ρ = 0.1 (90% SINR satisfaction).

W.-K. Ma & A. M.-C. So, SDR for Nonconvex Quadratic Opt., EUSIPCO 2011 tutorial 164



1 3 5 7 9 11 13 15 17 19 21

−15

−10

−5

0

5

10

15

20

25

SINR Requirment, γ (dB)

A
ve

ra
ge

 tr
an

sm
is

si
on

 p
ow

er
 (

dB
)

 

 

Probabilistic SOCP
SDR+Bernstein

Transmit power performance of the proposed method and the probabilistic SOCP method.

Nt = K = 3; σ2
e = 0.002; ρ = 0.1 (90% SINR satisfaction).
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